@article{WBLN_2021__8__A3_0, author = {Ramanujan Santharoubane}, title = {Applications of quantum representations of mapping class groups}, journal = {Winter Braids Lecture Notes}, note = {talk:3}, pages = {1--24}, publisher = {Winter Braids School}, volume = {8}, year = {2021}, doi = {10.5802/wbln.40}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.40/} }
TY - JOUR AU - Ramanujan Santharoubane TI - Applications of quantum representations of mapping class groups JO - Winter Braids Lecture Notes N1 - talk:3 PY - 2021 SP - 1 EP - 24 VL - 8 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.40/ DO - 10.5802/wbln.40 LA - en ID - WBLN_2021__8__A3_0 ER -
%0 Journal Article %A Ramanujan Santharoubane %T Applications of quantum representations of mapping class groups %J Winter Braids Lecture Notes %Z talk:3 %D 2021 %P 1-24 %V 8 %I Winter Braids School %U https://proceedings.centre-mersenne.org/articles/10.5802/wbln.40/ %R 10.5802/wbln.40 %G en %F WBLN_2021__8__A3_0
Ramanujan Santharoubane. Applications of quantum representations of mapping class groups. Winter Braids Lecture Notes, Volume 8 (2021), Talk no. 3, 24 p. doi : 10.5802/wbln.40. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.40/
[A06] J. E. Andersen. Asymptotic faithfulness of the quantum representations of the mapping class groups. Ann. of Math. (2), 163(1) : 347–368, 2006. | DOI | MR | Zbl
[AMU06] J.E. Andersen, G. Masbaum, K. Ueno. Topological quantum field theory and the Nielsen-Thurston classification of . Math. Proc. Cam. Phil. Soc. 141 (2006), 447–488. | DOI | MR | Zbl
[B74] J. Birman. Braids, links and mapping class groups. Ann. Math. Studies, Princeton Univ. Press, no. 82, 1974. | DOI
[BHMV92] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel. Three-manifold invariants derived from the Kauffman bracket. Topology. 31 (1992), 685-699. | DOI | MR | Zbl
[BHMV95] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel. Topological quantum field theories derived from the Kauffman bracket. Topology. 34(4) :883–927, 1995. | DOI | Zbl
[DK19] R. Detcherry, E. Kalfagianni. Quantum representations and monodromies of fibered links. Adv. Math., Vol 351, (2019), 676-701 | DOI | MR | Zbl
[DM22] B. Deroin, J. Marché Toledo invariants of Topological Quantum Field Theories. arXiv:2207.09952
[EH18] M. Ershov, S. He. On finiteness properties of the Johnson filtrations. Duke Math. J. 167 (2018), no. 9, 1713–1759. | DOI | MR | Zbl
[F99] L. Funar On the TQFT representations of the mapping class groups. Pacific J. Math, 188(1999), 251-274. | DOI | MR | Zbl
[FK06] M. Freedman and V. Krushkal. On the asymptotics of quantum representations. Forum Math. 18 (2006), no. 2, 293–304. | DOI | MR
[FM11] B. Farb, D. Margalit. A Primer on Mapping Class Groups. Princeton University Press, 2011. | Zbl
[FWW02] M. H. Freedman, K. Walker, Z. Wang. Quantum faithfully detects mapping class groups modulo center. Geom. Topol., 6 :523–539, 2002. | DOI | MR | Zbl
[G74] E. K. Grossman. On the residual finiteness of certain mapping class groups. J. London Math. Soc., 2 (9) 160-164, 1974. | DOI | Zbl
[GLLM15] F. Grunewald, M. Larsen, A. Lubotzky, J. Malestein. Arithmetic quotients of the mapping class group. Geom. Funct. Anal. 25 (2015), no. 5, 1493–1542. | DOI | MR | Zbl
[GM07] P. M. Gilmer, G. Masbaum. Integral lattices in TQFT. Ann. Sci. Ecole Norm. Sup. (4) 40 (2007), no. 5, 815–844. | DOI | MR | Zbl
[HP95] J. Hoste, J. H. Przytycki. The Kauffman bracket skein module of . Math. Z, 220.1 (1995): 65-74 | DOI | Zbl
[K81] I. Kra. On the Nielsen-Thurston-Bers type of some self maps of Riemann surfaces. Acta Math. 134 (1981), no. 3–4, 231–270. | DOI | MR | Zbl
[KS16] T. Koberda, R. Santharoubane. Quotients of surface groups and homology of finite covers via quantum representations. Invent.Math. 206 (2016), 269–292 | DOI | MR | Zbl
[KS16b] T. Koberda, R. Santharoubane. A representation theoretic characterization of simple closed curves on a surface. Math. Res. Lett. Volume 25, Number 5, 1485–1496, 2018 | DOI | MR | Zbl
[L91] W. B. R. Lickorish. Invariants for 3-manifolds from the combinatorics of the Jones polynomial. Pacific J. Math., 149(2) :337–347, 1991. | DOI | MR | Zbl
[L15] E. Looijenga. Some algebraic geometry related to the mapping class group. Oberwolfach Reports. June 2015.
[LW05] M. Larsen, Z. Wang. Density of the TQFT representation of mapping class groups. Comm. Math. Phys. 260 (2005), 641–658. | DOI | MR | Zbl
[M11] J. Marché. The Kauffman skein algebra of a surface at . Math. Ann. 351 (2011), no. 2, 347–364. | DOI | MR | Zbl
[M98] G. Masbaum. An element of infinite order in TQFT-representations of mapping class groups. Contemp. Math., 233 (1999) 137-139. | DOI | Zbl
[Mc01] J. D. McCarthy. On the first cohomology group of cofinite subgroups in surface mapping class groups. Topology 40 (2001), no. 2, 401-418. | DOI | MR | Zbl
[MN08] J. Marché, M. Narimannejad. Some asymptotics of topological quantum field theory via skein theory. Duke Math. J., 141(3) :573–587, 2008. | DOI | MR | Zbl
[MP19] J. Malestein, A. Putman Simple closed curves, finite covers of surfaces, and power subgroups of . Duke Math. J. 168(14): 2701-2726 | DOI | Zbl
[MR12] G. Masbaum, A. W. Reid. All finite groups are involved in the Mapping Class Group. Geom. Top. 16 (2012) 1393-1411. | DOI | MR | Zbl
[MS21] J. Marché, R. Santharoubane. Asymptotics of quantum representations of surface groups. Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 5, 1275–1296 | DOI | MR | Zbl
[MV94] G. Masbaum, P. Vogel. -valent graphs and the Kauffman bracket. Pacific J. Math. 164 (1994), no. 2, 361–381. | DOI | MR | Zbl
[P14] P. Patel. On a theorem of Peter Scott. Proc. Amer. Math. Soc. 142 (2014), no. 8, 2891–2906. | DOI | MR | Zbl
[P10] A. Putman. A note on the abelianizations of finite-index subgroups of the mapping class group. Proc. Amer. Math. Soc. 138 (2010), 753-758. | DOI | MR | Zbl
[PW13] A. Putman and B. Wieland. Abelian quotients of subgroups of the mapping class group and higher Prym representations. J. London Math. Soc. (2) 88 (2013), no. 1, 79–96. | DOI | MR | Zbl
[R01] J. Roberts. Irreducibility of some quantum representations of mapping class groups. Journal of Knot Theory and its Ramifications. 10(5) 763–767, 2001. | DOI | MR | Zbl
[RT91] N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103(3) :547–597, 1991. | DOI | MR | Zbl
[S12] R. Santharoubane. Limits of quantum representations for the one-holed torus. Journal of Knot Theory and its Ramifications. 21 (2012). | DOI | MR | Zbl
[S78] P. Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. | DOI | MR | Zbl
[T00] F. Taherkhani. The Kazhdan property of the mapping class group of closed surfaces and the first cohomology group of its cofinite subgroups. Experiment. Math. 9 (2000), no. 2, 261–274. | DOI | MR | Zbl
[W88] E. Witten. Topological quantum field theory. Comm. Math. Phys., 117(3) :353–386, 1988. | DOI | MR | Zbl
[W89] E. Witten. Quantum field theory and the Jones polynomial. Comm. Math.Phys., 121(3) :351–399, 1989. | DOI | MR | Zbl
Cited by Sources: