These notes were prepared to accompany a sequence of three lectures at the conference Winterbraids XI in Dijon, held in December 2021. In them, we provide an introduction to slice knots and the equivalence relation of concordance. We explain some connections between slice knots and exotic smooth structures on . We also introduce filtrations of the knot concordance groups and satellite operations.
@article{WBLN_2021__8__A2_0, author = {Arunima Ray}, title = {Slice knots and knot concordance}, journal = {Winter Braids Lecture Notes}, note = {talk:2}, pages = {1--31}, publisher = {Winter Braids School}, volume = {8}, year = {2021}, doi = {10.5802/wbln.39}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.39/} }
Arunima Ray. Slice knots and knot concordance. Winter Braids Lecture Notes, Volume 8 (2021), Talk no. 2, 31 p. doi : 10.5802/wbln.39. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.39/
[1] Paolo Aceto; Nickolas A. Castro; Maggie Miller; JungHwan Park; András Stipsicz Slice obstructions from genus bounds in definite 4-manifolds (2023) (https://arxiv.org/abs/2303.10587) | DOI
[2] Ian Agol Ribbon concordance of knots is a partial ordering, Commun. Am. Math. Soc., Volume 2 (2022), pp. 374-379 | DOI | MR | Zbl
[3] Selman Akbulut Corks and exotic ribbons in , Eur. J. Math., Volume 8 (2022), p. S494-S498 | DOI | MR | Zbl
[4] Selman Akbulut A fake compact contractible -manifold, J. Differ. Geom., Volume 33 (1991) no. 2, pp. 335-356 http://projecteuclid.org/euclid.jdg/1214446320 | MR | Zbl
[5] Paolo Aceto; Min Hoon Kim; JungHwan Park; Arunima Ray Pretzel links, mutation, and the slice-ribbon conjecture, Math. Res. Lett., Volume 28 (2021) no. 4, pp. 945-966 | DOI | MR | Zbl
[6] Tetsuya Abe; Keiji Tagami Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett., Volume 23 (2016) no. 2, pp. 303-323 | DOI | MR | Zbl
[7] Keegan Boyle; Wenzhao Chen Equivariant topological slice disks and negative amphichiral knots (2022) (https://arxiv.org/abs/2207.12593) | DOI
[8] Maciej Borodzik; Peter Feller Up to topological concordance, links are strongly quasipositive, J. Math. Pures Appl., Volume 132 (2019), pp. 273-279 | DOI | MR | Zbl
[9] Žarko Bižaca; Robert E. Gompf Elliptic surfaces and some simple exotic ’s, J. Differ. Geom., Volume 43 (1996) no. 3, pp. 458-504 http://projecteuclid.org/euclid.jdg/1214458322 | MR | Zbl
[10] Laurent Bartholdi; Rostislav Grigorchuk; Volodymyr Nekrashevych From fractal groups to fractal sets, Fractals in Graz 2001 (Trends in Mathematics), Birkhäuser, 2003, pp. 25-118 | DOI | MR | Zbl
[11] Keegan Boyle; Ahmad Issa Equivariant 4-genera of strongly invertible and periodic knots, J. Topol., Volume 15 (2022) no. 3, pp. 1635-1674 | DOI | MR | Zbl
[12] Kathryn Bryant Slice implies mutant ribbon for odd 5-stranded pretzel knots, Algebr. Geom. Topol., Volume 17 (2017) no. 6, pp. 3621-3664 | DOI | MR | Zbl
[13] Conference organisers Problem List, Conference on 4-manifolds and knot concordance, Max Planck Institute for Mathematics (2016)
[14] Andrew J. Casson Three lectures on new-infinite constructions in -dimensional manifolds, À la recherche de la topologie perdue (Progress in Mathematics), Volume 62, Birkhäuser, 1986, pp. 201-244 (With an appendix by L. Siebenmann) | MR
[15] Tim D. Cochran; Christopher W. Davis; Arunima Ray Injectivity of satellite operators in knot concordance, J. Topol., Volume 7 (2014) no. 4, pp. 948-964 | DOI | MR | Zbl
[16] Daniele Celoria On concordances in 3-manifolds, J. Topol., Volume 11 (2018) no. 1, pp. 180-200 | DOI | MR | Zbl
[17] Tim D. Cochran; Bridget D. Franklin; Matthew Hedden; Peter D. Horn Knot concordance and homology cobordism, Proc. Am. Math. Soc., Volume 141 (2013) no. 6, pp. 2193-2208 | DOI | MR | Zbl
[18] Tim Cochran; Stefan Friedl; Peter Teichner New constructions of slice links, Comment. Math. Helv., Volume 84 (2009) no. 3, pp. 617-638 | DOI | MR | Zbl
[19] A. J. Casson; C. McA. Gordon On slice knots in dimension three., Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, (Proc. Sympos. Pure Math., XXXII,), American Mathematical Society, 1978, pp. 39-53 | MR | Zbl
[20] Jeff Cheeger; Mikhael Gromov Bounds on the von Neumann dimension of -cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differ. Geom., Volume 21 (1985) no. 1, pp. 1-34 http://projecteuclid.org/euclid.jdg/1214439461 | MR | Zbl
[21] A. J. Casson; C. McA. Gordon Cobordism of classical knots, À la recherche de la topologie perdue (Progress in Mathematics), Volume 62, Birkhäuser, 1986, pp. 181-199 (With an appendix by P. M. Gilmer) | MR
[22] Tim D. Cochran; Robert E. Gompf Applications of Donaldson’s theorems to classical knot concordance, homology -spheres and property , Topology, Volume 27 (1988) no. 4, pp. 495-512 | DOI | MR | Zbl
[23] Tim D. Cochran; Peter D. Horn Structure in the bipolar filtration of topologically slice knots, Algebr. Geom. Topol., Volume 15 (2015) no. 1, pp. 415-428 | DOI | MR | Zbl
[24] Tim Cochran; Shelly Harvey The geometry of the knot concordance space, Algebr. Geom. Topol., Volume 18 (2018) no. 5, pp. 2509-2540 | DOI | MR | Zbl
[25] Jae Choon Cha The structure of the rational concordance group of knots, Mem. Am. Math. Soc., Volume 189 (2007) no. 885, p. x+95 | DOI | MR | Zbl
[26] Jae Choon Cha Topological minimal genus and -signatures, Algebr. Geom. Topol., Volume 8 (2008) no. 2, pp. 885-909 | DOI | MR | Zbl
[27] Wenzhao Chen An infinite-rank summand from iterated Mazur pattern satellite knots (2020) (https://arxiv.org/abs/2010.11277) | DOI
[28] Tim D. Cochran; Shelly Harvey; Peter Horn Filtering smooth concordance classes of topologically slice knots, Geom. Topol., Volume 17 (2013) no. 4, pp. 2103-2162 | DOI | MR | Zbl
[29] Tim D. Cochran; Shelly Harvey; Constance Leidy Knot concordance and higher-order Blanchfield duality, Geom. Topol., Volume 13 (2009) no. 3, pp. 1419-1482 | DOI | MR | Zbl
[30] Tim D. Cochran; Shelly Harvey; Constance Leidy 2-torsion in the -solvable filtration of the knot concordance group, Proc. Lond. Math. Soc., Volume 102 (2011) no. 2, pp. 257-290 | DOI | MR | Zbl
[31] Tim D. Cochran; Shelly Harvey; Constance Leidy Primary decomposition and the fractal nature of knot concordance, Math. Ann., Volume 351 (2011) no. 2, pp. 443-508 | DOI | MR | Zbl
[32] Tim D. Cochran; Shelly Harvey; Mark Powell Grope metrics on the knot concordance set, J. Topol., Volume 10 (2017) no. 3, pp. 669-699 | DOI | MR | Zbl
[33] Tim D. Cochran; Shelly L. Harvey; Mark Powell; Arunima Ray Tower metrics on the smooth concordance set of knots (2023+) (In preparation)
[34] Jae Choon Cha; Min Hoon Kim The bipolar filtration of topologically slice knots, Adv. Math., Volume 388 (2021), 107868, 32 pages | DOI | MR | Zbl
[35] Jae Choon Cha; Ki Hyoung Ko On equivariant slice knots, Proc. Am. Math. Soc., Volume 127 (1999) no. 7, pp. 2175-2182 | DOI | MR | Zbl
[36] Anthony Conway; Min Hoon Kim; Wojciech Politarczyk Nonslice linear combinations of iterated torus knots, Algebr. Geom. Topol., Volume 23 (2023) no. 2, pp. 765-802 | DOI | MR | Zbl
[37] T. D. Cochran; W. B. R. Lickorish Unknotting information from -manifolds, Trans. Am. Math. Soc., Volume 297 (1986) no. 1, pp. 125-142 | DOI | MR | Zbl
[38] Jae Choon Cha; Allison N. Miller; Mark Powell Two-solvable and two-bipolar knots with large four-genera, Math. Res. Lett., Volume 28 (2021) no. 2, pp. 331-382 | DOI | MR | Zbl
[39] Anthony Conway; Matthias Nagel Stably slice disks of links, J. Topol., Volume 13 (2020) no. 3, pp. 1261-1301 | DOI | MR | Zbl
[40] Tim D. Cochran; Kent E. Orr Homology boundary links and Blanchfield forms: concordance classification and new tangle-theoretic constructions, Topology, Volume 33 (1994) no. 3, pp. 397-427 | DOI | MR | Zbl
[41] Tim D. Cochran Noncommutative knot theory, Algebr. Geom. Topol., Volume 4 (2004), pp. 347-398 | DOI | MR | Zbl
[42] Anthony Conway Homotopy ribbon discs with a fixed group (2022) (https://arxiv.org/abs/2201.04465) | DOI
[43] Tim D. Cochran; Kent E. Orr; Peter Teichner Knot concordance, Whitney towers and -signatures, Ann. Math., Volume 157 (2003) no. 2, pp. 433-519 | DOI | MR | Zbl
[44] Tim D. Cochran; Kent E. Orr; Peter Teichner Structure in the classical knot concordance group, Comment. Math. Helv., Volume 79 (2004) no. 1, pp. 105-123 | DOI | MR | Zbl
[45] Anthony Conway; Mark Powell Characterisation of homotopy ribbon discs, Adv. Math., Volume 391 (2021), 107960, 29 pages | DOI | MR | Zbl
[46] Tim D. Cochran; Peter Teichner Knot concordance and von Neumann -invariants, Duke Math. J., Volume 137 (2007) no. 2, pp. 337-379 | DOI | MR | Zbl
[47] Tim D. Cochran; Eamonn Tweedy Positive links, Algebr. Geom. Topol., Volume 14 (2014) no. 4, pp. 2259-2298 | DOI | MR | Zbl
[48] Irving Dai; Matthew Hedden; Abhishek Mallick; Matthew Stoffregen Rank-expanding satellites, Whitehead doubles, and Heegaard Floer homology (2022) (https://arxiv.org/abs/2209.07512) | DOI
[49] Irving Dai; Jennifer Hom; Matthew Stoffregen; Linh Truong More concordance homomorphisms from knot Floer homology, Geom. Topol., Volume 25 (2021) no. 1, pp. 275-338 | DOI | MR | Zbl
[50] Alessio Di Prisa Equivariant algebraic concordance of strongly invertible knots (2023) (https://arxiv.org/abs/2303.11895) | DOI
[51] Alessio Di Prisa The equivariant concordance group is not abelian, Bull. Lond. Math. Soc., Volume 55 (2023) no. 1, pp. 502-507 | DOI | MR | Zbl
[52] Irving Dai; Sungkyung Kang; Abhishek Mallick; JungHwan Park; Matthew Stoffregen The -cable of the figure-eight knot is not smoothly slice (2022) (https://arxiv.org/abs/2207.14187) | DOI
[53] Aliakbar Daemi; Tye Lidman; David Shea Vela-Vick; C.-M. Michael Wong Ribbon homology cobordisms, Adv. Math., Volume 408 (2022), 108580, 68 pages | DOI | MR | Zbl
[54] Stefano De Michelis; Michael H. Freedman Uncountably many exotic ’s in standard -space, J. Differ. Geom., Volume 35 (1992) no. 1, pp. 219-254 http://projecteuclid.org/euclid.jdg/1214447810 | MR | Zbl
[55] Christopher W. Davis; Taylor Martin; Carolyn Otto; JungHwan Park Every genus one algebraically slice knot is 1-solvable, Trans. Am. Math. Soc., Volume 372 (2019) no. 5, pp. 3063-3082 | DOI | MR | Zbl
[56] Irving Dai; Abhishek Mallick; Matthew Stoffregen Equivariant knots and knot Floer homology, J. Topol., Volume 16 (2023) no. 3, pp. 1167-1236 | DOI | MR | Zbl
[57] James F. Davis; Swatee Naik Alexander polynomials of equivariant slice and ribbon knots in , Trans. Am. Math. Soc., Volume 358 (2006) no. 7, pp. 2949-2964 | DOI | MR | Zbl
[58] S. K. Donaldson An application of gauge theory to four-dimensional topology, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 279-315 http://projecteuclid.org/euclid.jdg/1214437665 | DOI | MR | Zbl
[59] S. K. Donaldson Connections, cohomology and the intersection forms of -manifolds, J. Differ. Geom., Volume 24 (1986) no. 3, pp. 275-341 http://projecteuclid.org/euclid.jdg/1214440551 | DOI | MR | Zbl
[60] S. K. Donaldson The orientation of Yang-Mills moduli spaces and -manifold topology, J. Differ. Geom., Volume 26 (1987) no. 3, pp. 397-428 http://projecteuclid.org/euclid.jdg/1214441485 | DOI | MR | Zbl
[61] Alessio Di Prisa; Giovanni Framba A new invariant of equivariant concordance and results on 2-bridge knots (2023) (https://arxiv.org/abs/2303.08794)
[62] Christopher W. Davis; JungHwan Park; Arunima Ray Linear independence of cables in the knot concordance group, Trans. Am. Math. Soc., Volume 374 (2021) no. 6, pp. 4449-4479 | DOI | MR | Zbl
[63] Christopher W. Davis; Arunima Ray Satellite operators as group actions on knot concordance, Algebr. Geom. Topol., Volume 16 (2016) no. 2, pp. 945-969 | DOI | MR | Zbl
[64] Hisaaki Endo Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl., Volume 63 (1995) no. 3, pp. 257-262 | DOI | MR | Zbl
[65] Peter Feller The degree of the Alexander polynomial is an upper bound for the topological slice genus, Geom. Topol., Volume 20 (2016) no. 3, pp. 1763-1771 | DOI | MR | Zbl
[66] Michael Freedman; Robert Gompf; Scott Morrison; Kevin Walker Man and machine thinking about the smooth 4-dimensional Poincaré conjecture, Quantum Topol., Volume 1 (2010) no. 2, pp. 171-208 | DOI | MR | Zbl
[67] Stefan Friedl; Takahiro Kitayama; Lukas Lewark; Matthias Nagel; Mark Powell Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials, Can. J. Math., Volume 74 (2022) no. 4, pp. 1137-1176 | DOI | MR | Zbl
[68] Peter Feller; Duncan McCoy On 2-bridge knots with differing smooth and topological slice genera, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5435-5442 | DOI | MR | Zbl
[69] Stefan Friedl; Matthias Nagel; Patrick Orson; Mark Powell A survey of the foundations of four-manifold theory in the topological category (2019) (https://arxiv.org/abs/1910.07372) | DOI
[70] Stefan Friedl; Matthias Nagel; Patrick Orson; Mark Powell Satellites and concordance of knots in 3-manifolds, Trans. Am. Math. Soc., Volume 371 (2019) no. 4, pp. 2279-2306 | DOI | MR | Zbl
[71] R. H. Fox Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961, pp. 168-176 | MR | Zbl
[72] R. H. Fox A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J. (1962), pp. 120-167 | MR | Zbl
[73] Stefan Friedl; Mark Powell Homotopy ribbon concordance and Alexander polynomials, Arch. Math., Volume 115 (2020) no. 6, pp. 717-725 | DOI | MR | Zbl
[74] Michael H. Freedman; Frank Quinn Topology of 4-manifolds, Princeton Mathematical Series, 39, Princeton University Press, 1990, viii+259 pages | MR
[75] Michael Hartley Freedman The topology of four-dimensional manifolds, J. Differ. Geom., Volume 17 (1982) no. 3, pp. 357-453 http://projecteuclid.org/euclid.jdg/1214437136 | MR | Zbl
[76] Ronald Fintushel; Ronald J. Stern Knots, links, and -manifolds, Invent. Math., Volume 134 (1998) no. 2, pp. 363-400 | DOI | MR | Zbl
[77] Michael H. Freedman; Laurence R. Taylor A universal smoothing of four-space, J. Differ. Geom., Volume 24 (1986) no. 1, pp. 69-78 http://projecteuclid.org/euclid.jdg/1214440258 | MR | Zbl
[78] Joshua Greene; Stanislav Jabuka The slice-ribbon conjecture for 3-stranded pretzel knots, Am. J. Math., Volume 133 (2011) no. 3, pp. 555-580 | DOI | MR | Zbl
[79] Robert E. Gompf An infinite set of exotic ’s, J. Differ. Geom., Volume 21 (1985) no. 2, pp. 283-300 http://projecteuclid.org/euclid.jdg/1214439566 | MR | Zbl
[80] Robert E. Gompf Smooth concordance of topologically slice knots, Topology, Volume 25 (1986) no. 3, pp. 353-373 | DOI | MR | Zbl
[81] C. McA. Gordon Ribbon concordance of knots in the -sphere, Math. Ann., Volume 257 (1981) no. 2, pp. 157-170 | DOI | MR | Zbl
[82] Robert E. Gompf; András I. Stipsicz -manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, 1999, xvi+558 pages | DOI | MR
[83] Robert E. Gompf; Martin Scharlemann; Abigail Thompson Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures, Geom. Topol., Volume 14 (2010) no. 4, pp. 2305-2347 | DOI | MR | Zbl
[84] Stavros Garoufalidis; Peter Teichner On knots with trivial Alexander polynomial, J. Differ. Geom., Volume 67 (2004) no. 1, pp. 167-193 http://projecteuclid.org/euclid.jdg/1099587731 | MR | Zbl
[85] Kyle Hayden Cross-sections of unknotted ribbon disks and algebraic curves, Compos. Math., Volume 155 (2019) no. 2, pp. 413-423 | DOI | MR | Zbl
[86] Matthew Hedden On knot Floer homology and cabling. II, Int. Math. Res. Not. (2009) no. 12, pp. 2248-2274 | DOI | MR | Zbl
[87] M. A. Hill; M. J. Hopkins; D. C. Ravenel On the nonexistence of elements of Kervaire invariant one, Ann. Math., Volume 184 (2016) no. 1, pp. 1-262 | DOI | MR | Zbl
[88] Jonathan Hillman Algebraic invariants of links, Series on Knots and Everything, 52, World Scientific, 2012, xiv+353 pages | DOI | MR
[89] Matthew Hedden; Paul Kirk Instantons, concordance, and Whitehead doubling, J. Differ. Geom., Volume 91 (2012) no. 2, pp. 281-319 http://projecteuclid.org/euclid.jdg/1344430825 | MR | Zbl
[90] Matthew Hedden; Paul Kirk; Charles Livingston Non-slice linear combinations of algebraic knots, J. Eur. Math. Soc., Volume 14 (2012) no. 4, pp. 1181-1208 | DOI | MR | Zbl
[91] Matthew Hedden; Se-Goo Kim; Charles Livingston Topologically slice knots of smooth concordance order two, J. Differ. Geom., Volume 102 (2016) no. 3, pp. 353-393 http://projecteuclid.org/euclid.jdg/1456754013 | MR | Zbl
[92] Jennifer Hom; Sungkyung Kang; JungHwan Park Topologically and rationally slice knots (2023) (https://arxiv.org/abs/2304.06265) | DOI
[93] Jennifer Hom; Sungkyung Kang; JungHwan Park; Matthew Stoffregen Linear independence of rationally slice knots, Geom. Topol., Volume 26 (2022) no. 7, pp. 3143-3172 | DOI | MR | Zbl
[94] Matthew Hedden; Charles Livingston; Daniel Ruberman Topologically slice knots with nontrivial Alexander polynomial, Adv. Math., Volume 231 (2012) no. 2, pp. 913-939 | DOI | MR | Zbl
[95] Kristen Hendricks; Ciprian Manolescu Involutive Heegaard Floer homology, Duke Math. J., Volume 166 (2017) no. 7, pp. 1211-1299 | DOI | MR | Zbl
[96] Jennifer Hom The knot Floer complex and the smooth concordance group, Comment. Math. Helv., Volume 89 (2014) no. 3, pp. 537-570 | DOI | MR | Zbl
[97] Jennifer Hom An infinite-rank summand of topologically slice knots, Geom. Topol., Volume 19 (2015) no. 2, pp. 1063-1110 | DOI | MR | Zbl
[98] Jennifer Hom A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications, Volume 26 (2017) no. 2, 1740015, 24 pages | DOI | MR | Zbl
[99] Jennifer Hom Correction to the article An infinite-rank summand of topologically slice knots, Geom. Topol., Volume 23 (2019) no. 5, pp. 2699-2700 | DOI | MR | Zbl
[100] Matthew Hedden; Juanita Pinzón-Caicedo Satellites of infinite rank in the smooth concordance group, Invent. Math., Volume 225 (2021) no. 1, pp. 131-157 | DOI | MR | Zbl
[101] Matthew Hedden; Katherine Raoux Knot Floer homology and relative adjunction inequalities, Sel. Math., New Ser., Volume 29 (2023) no. 1, 7, 48 pages | DOI | MR | Zbl
[102] Kyle Hayden; Isaac Sundberg Khovanov homology and exotic surfaces in the 4-ball (2021) (https://arxiv.org/abs/2108.04810) | DOI
[103] Bo Ju Jiang A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Am. Math. Soc., Volume 83 (1981) no. 1, pp. 189-192 | DOI | MR | Zbl
[104] Randall Johanningsmeier; Hillary Kim; Allison N. Miller A partial resolution of Hedden’s conjecture on satellite homomorphisms (2023) (https://arxiv.org/abs/2308.06890) | DOI
[105] András Juhász; Ian Zemke Distinguishing slice disks using knot Floer homology, Sel. Math., New Ser., Volume 26 (2020) no. 1, 5, 18 pages | DOI | MR | Zbl
[106] Sungkyung Kang Link homology theories and ribbon concordances, Quantum Topol., Volume 13 (2022) no. 1, pp. 183-205 | DOI | MR | Zbl
[107] Akio Kawauchi Rational-slice knots via strongly negative-amphicheiral knots, Commun. Math. Res., Volume 25 (2009) no. 2, pp. 177-192 | MR | Zbl
[108] C. Kearton Classification of simple knots by Blanchfield duality, Bull. Am. Math. Soc., Volume 79 (1973), pp. 952-955 | DOI | MR | Zbl
[109] C. Kearton Blanchfield duality and simple knots, Trans. Am. Math. Soc., Volume 202 (1975), pp. 141-160 | DOI | MR | Zbl
[110] C. Kearton Cobordism of knots and Blanchfield duality, J. Lond. Math. Soc., Volume 10 (1975) no. 4, pp. 406-408 | DOI | MR | Zbl
[111] Michel A. Kervaire Les nœuds de dimensions supérieures, Bull. Soc. Math. Fr., Volume 93 (1965), pp. 225-271 | DOI | Numdam | MR | Zbl
[112] Michel A. Kervaire Knot cobordism in codimension two., Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School) (Lecture Notes in Mathematics, Vol. 197), Springer, 1971, pp. 83-105 | DOI | MR | Zbl
[113] Robion C. Kirby The topology of -manifolds, Lecture Notes in Mathematics, 1374, Springer, 1989, vi+108 pages | DOI | MR
[114] Rob Kirby Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) (AMS/IP Studies in Advanced Mathematics), Volume 2.2, American Mathematical Society, 1997, pp. 35-473 | DOI | MR
[115] Taehee Kim; Charles Livingston Knot reversal acts non-trivially on the concordance group of topologically slice knots, Sel. Math., New Ser., Volume 28 (2022) no. 2, 38, 17 pages | DOI | MR | Zbl
[116] Paul Kirk; Charles Livingston Twisted knot polynomials: inversion, mutation and concordance, Topology, Volume 38 (1999) no. 3, pp. 663-671 | DOI | MR | Zbl
[117] Min Hoon Kim; Changhee Lee; Minkyoung Song Non-slice 3-stranded pretzel knots, J. Knot Theory Ramifications, Volume 31 (2022) no. 3, 2250018, 10 pages | DOI | MR | Zbl
[118] Michel A. Kervaire; John W. Milnor Groups of homotopy spheres. I, Ann. Math., Volume 77 (1963), pp. 504-537 | DOI | MR | Zbl
[119] Alexandra Kjuchukova; Allison N. Miller; Arunima Ray; Sümeyra Sakallı Slicing knots in definite 4-manifolds (2021) (https://arxiv.org/abs/2112.14596) | DOI
[120] Min Hoon Kim; Patrick Orson; JungHwan Park; Arunima Ray Open problems, The disc embedding theorem (Stefan Behrens; Boldizsár Kalmár; Min Hoon Kim; Mark Powell; Arunima Ray, eds.), Oxford University Press, 2021, pp. 353-382 | MR
[121] Michael R. Klug; Benjamin M. Ruppik Deep and shallow slice knots in 4-manifolds, Proc. Am. Math. Soc., Ser. B, Volume 8 (2021), pp. 204-218 | DOI | MR | Zbl
[122] Robion C. Kirby; Laurence C. Siebenmann Foundational essays on topological manifolds, smoothings, and triangulations., Princeton University Press; University of Tokyo Press, 1977, vii+355 pages (With notes by John Milnor and Michael Atiyah.) | DOI | MR
[123] Kengo Kishimoto; Tetsuo Shibuya; Tatsuya Tsukamoto Sliceness of alternating pretzel knots and links, Topology Appl., Volume 282 (2020), 107317, 6 pages | DOI | MR | Zbl
[124] Ana G. Lecuona On the slice-ribbon conjecture for Montesinos knots, Trans. Am. Math. Soc., Volume 364 (2012) no. 1, pp. 233-285 | DOI | MR | Zbl
[125] Ana G. Lecuona On the slice-ribbon conjecture for pretzel knots, Algebr. Geom. Topol., Volume 15 (2015) no. 4, pp. 2133-2173 | DOI | MR | Zbl
[126] Adam Simon Levine Nonsurjective satellite operators and piecewise-linear concordance, Forum Math. Sigma, Volume 4 (2016), e34, 47 pages | DOI | MR | Zbl
[127] J. Levine Invariants of knot cobordism, Invent. Math., Volume 8 (1969), pp. 98-110 addendum, ibid. 8 (1969), 355 | DOI | MR | Zbl
[128] J. Levine Knot cobordism groups in codimension two, Comment. Math. Helv., Volume 44 (1969), pp. 229-244 | DOI | MR | Zbl
[129] Paolo Lisca Lens spaces, rational balls and the ribbon conjecture, Geom. Topol., Volume 11 (2007), pp. 429-472 | DOI | MR | Zbl
[130] R. A. Litherland Cobordism of satellite knots, Four-manifold theory (Durham, N.H., 1982) (Contemporary Mathematics), Volume 35, American Mathematical Society, 1984, pp. 327-362 | DOI | MR | Zbl
[131] Charles Livingston A survey of classical knot concordance, Handbook of knot theory, Elsevier, 2005, pp. 319-347 | DOI | MR | Zbl
[132] Charles Livingston Knot theory, Carus Mathematical Monographs, 24, Mathematical Association of America, Washington, DC, 1993, xviii+240 pages | DOI | MR
[133] Charles Livingston Order 2 algebraically slice knots, Proceedings of the Kirbyfest (Berkeley, CA, 1998) (Geometry and Topology Monographs), Volume 2, Geometry and Topology Publications (1999), pp. 335-342 | DOI | MR | Zbl
[134] Lukas Lewark; Andrew Lobb New quantum obstructions to sliceness, Proc. Lond. Math. Soc., Volume 112 (2016) no. 1, pp. 81-114 | DOI | MR | Zbl
[135] Lukas Lewark; Andrew Lobb Upsilon-like concordance invariants from knot cohomology, Geom. Topol., Volume 23 (2019) no. 2, pp. 745-780 | DOI | MR | Zbl
[136] Andrew Lobb A slice genus lower bound from Khovanov-Rozansky homology, Adv. Math., Volume 222 (2009) no. 4, pp. 1220-1276 | DOI | MR | Zbl
[137] Ligang Long Slice Ribbon Conjecture, Pretzel Knots and Mutation, Ph. D. Thesis, The University of Texas at Austin (2014)
[138] Robert Lipshitz; Sucharit Sarkar Khovanov homology of strongly invertible knots and their quotients (2022) (https://arxiv.org/abs/2203.13895) | DOI
[139] Adam Simon Levine; Ian Zemke Khovanov homology and ribbon concordances, Bull. Lond. Math. Soc., Volume 51 (2019) no. 6, pp. 1099-1103 | DOI | MR | Zbl
[140] Abhishek Mallick Knot Floer homology and surgery on equivariant knots (2022) (https://arxiv.org/abs/2201.07299) | DOI
[141] Yukio Matsumoto An introduction to Morse theory, Translations of Mathematical Monographs, 208, American Mathematical Society, 2002, xiv+219 pages (Translated from the 1997 Japanese original by Kiki Hudson and Masahico Saito, Iwanami Series in Modern Mathematics) | DOI | MR
[142] Allison N. Miller Distinguishing mutant pretzel knots in concordance, J. Knot Theory Ramifications, Volume 26 (2017) no. 7, 1750041, 24 pages | DOI | MR | Zbl
[143] Allison N. Miller The topological sliceness of 3-strand pretzel knots, Algebr. Geom. Topol., Volume 17 (2017) no. 5, pp. 3057-3079 | DOI | MR | Zbl
[144] Allison N. Miller A note on the topological sliceness of some 2-bridge knots, Math. Proc. Camb. Philos. Soc., Volume 164 (2018) no. 1, pp. 185-191 | DOI | MR | Zbl
[145] Allison N. Miller Homomorphism obstructions for satellite maps, Trans. Amer. Math. Soc., Ser. B, Volume 10 (2023), pp. 220-240 | DOI | MR | Zbl
[146] John Milnor On manifolds homeomorphic to the -sphere, Ann. Math., Volume 64 (1956), pp. 399-405 | DOI | MR | Zbl
[147] J. Milnor Morse theory., Princeton University Press, 1963, vi+153 pages (Based on lecture notes by M. Spivak and R. Wells) | MR
[148] John Milnor Lectures on the -cobordism theorem., Princeton University Press, 1965, v+116 pages (Notes by L. Siebenmann and J. Sondow) | DOI | MR
[149] Katura Miyazaki Nonsimple, ribbon fibered knots, Trans. Am. Math. Soc., Volume 341 (1994) no. 1, pp. 1-44 | DOI | MR | Zbl
[150] Ciprian Manolescu; Marco Marengon; Lisa Piccirillo Relative genus bounds in indefinite four-manifolds (2020) (https://arxiv.org/abs/2012.12270) | DOI
[151] Marco Marengon; Allison N. Miller; Arunima Ray; András I. Stipsicz A note on surfaces in and (2022) (https://arxiv.org/abs/2210.12486) | DOI
[152] Ciprian Manolescu; Marco Marengon; Sucharit Sarkar; Michael Willis A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds, Duke Math. J., Volume 172 (2023) no. 2, pp. 231-311 | DOI | MR | Zbl
[153] Edwin E. Moise Geometric topology in dimensions and , Graduate Texts in Mathematics, Vol. 47, Springer, 1977, x+262 pages | DOI | MR
[154] Allison N. Miller; Lisa Piccirillo Knot traces and concordance, J. Topol., Volume 11 (2018) no. 1, pp. 201-220 | DOI | MR | Zbl
[155] Allison N. Miller; Mark Powell Stabilization distance between surfaces, Enseign. Math., Volume 65 (2019) no. 3-4, pp. 397-440 | DOI | MR | Zbl
[156] Ciprian Manolescu; Lisa Piccirillo From zero surgeries to candidates for exotic definite four-manifolds (2021) (https://arxiv.org/abs/2102.04391) | DOI
[157] Allison N. Miller; Mark Powell Strongly invertible knots, equivariant slice genera, and an equivariant algebraic concordance group, J. Lond. Math. Soc., Volume 107 (2023) no. 6, pp. 2025-2053 | DOI | MR | Zbl
[158] Maggie Miller; Ian Zemke Knot Floer homology and strongly homotopy-ribbon concordances, Math. Res. Lett., Volume 28 (2021) no. 3, pp. 849-861 | DOI | MR | Zbl
[159] Swatee Naik Equivariant concordance of knots in , KNOTS ’96 (Tokyo), World Scientific, 1997, pp. 81-89 | MR | Zbl
[160] Liviu Nicolaescu An invitation to Morse theory, Universitext, Springer, 2011, xvi+353 pages | DOI | MR
[161] Matthias Nagel; Patrick Orson; JungHwan Park; Mark Powell Smooth and topological almost concordance, Int. Math. Res. Not. (2019) no. 23, pp. 7324-7355 | DOI | MR | Zbl
[162] R. A. Norman Dehn’s lemma for certain -manifolds, Invent. Math., Volume 7 (1969), pp. 143-147 | DOI | MR | Zbl
[163] Peter S. Ozsváth; András I. Stipsicz; Zoltán Szabó Concordance homomorphisms from knot Floer homology, Adv. Math., Volume 315 (2017), pp. 366-426 | DOI | MR | Zbl
[164] Carolyn Otto The -solvable filtration of link concordance and Milnor’s invariants, Algebr. Geom. Topol., Volume 14 (2014) no. 5, pp. 2627-2654 | DOI | MR | Zbl
[165] Jake Pichelmeyer Genera of knots in the complex projective plane, J. Knot Theory Ramifications, Volume 29 (2020) no. 12, 2050081, 32 pages | DOI | MR | Zbl
[166] Juanita Pinzón-Caicedo Independence of satellites of torus knots in the smooth concordance group, Geom. Topol., Volume 21 (2017) no. 6, pp. 3191-3211 | DOI | MR | Zbl
[167] Mark Powell; Arunima Ray The development of topological 4-manifold theory, The disc embedding theorem (Stefan Behrens; Boldizsár Kalmár; Min Hoon Kim; Mark Powell; Arunima Ray, eds.), Oxford University Press, 2021, pp. 295-330 | DOI | MR
[168] Frank Quinn Ends of maps. III. Dimensions and , J. Differ. Geom., Volume 17 (1982) no. 3, pp. 503-521 http://projecteuclid.org/euclid.jdg/1214437139 | MR | Zbl
[169] Katherine Raoux -invariants for knots in rational homology spheres, Algebr. Geom. Topol., Volume 20 (2020) no. 4, pp. 1601-1640 | DOI | MR | Zbl
[170] Jacob Rasmussen Khovanov homology and the slice genus, Invent. Math., Volume 182 (2010) no. 2, pp. 419-447 | DOI | MR | Zbl
[171] Arunima Ray Satellite operators with distinct iterates in smooth concordance, Proc. Am. Math. Soc., Volume 143 (2015) no. 11, pp. 5005-5020 | DOI | MR | Zbl
[172] Dale Rolfsen Piecewise-linear -equivalence of links, Low-dimensional topology (Chelwood Gate, 1982) (London Mathematical Society Lecture Note Series), Volume 95, Cambridge University Press, 1985, pp. 161-178 | DOI | MR | Zbl
[173] Dale Rolfsen Knots and links, Mathematics Lecture Series, 7, Publish or Perish, Inc., Houston, TX, 1990, xiv+439 pages (Corrected reprint of the 1976 original) | MR
[174] Lee Rudolph How independent are the knot-cobordism classes of links of plane curve singularities, Notices Am. Math. Soc., Volume 23 (1976), p. 410
[175] Lee Rudolph Quasipositivity as an obstruction to sliceness, Bull. Am. Math. Soc., Volume 29 (1993) no. 1, pp. 51-59 | DOI | MR | Zbl
[176] Martin Scharlemann Smooth spheres in with four critical points are standard, Invent. Math., Volume 79 (1985) no. 1, pp. 125-141 | DOI | MR | Zbl
[177] Alexandru Scorpan The wild world of 4-manifolds, American Mathematical Society, 2005, xx+609 pages | MR
[178] Isaac Sundberg; Jonah Swann Relative Khovanov-Jacobsson classes, Algebr. Geom. Topol., Volume 22 (2022) no. 8, pp. 3983-4008 | DOI | MR | Zbl
[179] John Stallings The piecewise-linear structure of Euclidean space, Proc. Camb. Philos. Soc., Volume 58 (1962), pp. 481-488 | DOI | MR | Zbl
[180] Neal W. Stoltzfus Unraveling the integral knot concordance group, Mem. Am. Math. Soc., Volume 12 (1977) no. 192, p. iv+91 | DOI | MR | Zbl
[181] Clifford Henry Taubes Gauge theory on asymptotically periodic -manifolds, J. Differ. Geom., Volume 25 (1987) no. 3, pp. 363-430 http://projecteuclid.org/euclid.jdg/1214440981 | MR | Zbl
[182] H. F. Trotter On -equivalence of Seifert matrices, Invent. Math., Volume 20 (1973), pp. 173-207 | DOI | MR | Zbl
[183] H. F. Trotter Knot module and Seifert matrices., Knot theory (Proc. Sem., Plans-sur-Bex, 1977) (Lecture Notes in Math.), Volume 685, Springer, 1978, pp. 291-299 | MR | Zbl
[184] Workshop Organisers Final Report, Synchronizing Smooth and Topological 4-Manifolds (2016)
[185] Kouichi Yasui Corks, exotic 4-manifolds and knot concordance (2015) (https://arxiv.org/abs/1505.02551) | DOI
[186] Akira Yasuhara -torus knot is not slice in , Proc. Japan Acad., Ser. A, Volume 67 (1991) no. 10, pp. 353-355 http://projecteuclid.org/euclid.pja/1195511928 | MR | Zbl
[187] Akira Yasuhara On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid, Volume 5 (1992) no. 2-3, pp. 255-276 | MR | Zbl
[188] Eylem Zeliha Yildiz A note on knot concordance, Algebr. Geom. Topol., Volume 18 (2018) no. 5, pp. 3119-3128 | DOI | MR | Zbl
[189] Ian Zemke Knot Floer homology obstructs ribbon concordance, Ann. Math., Volume 190 (2019) no. 3, pp. 931-947 | DOI | MR | Zbl
Cited by Sources: