These introductory notes on Whitney towers in 4-manifolds, as developed in collaboration with Jim Conant and Peter Teichner, are an expansion of three expository lectures given at the Winter Braids X conference February 2020 in Pisa, Italy. Topics presented include local manipulations of surfaces in –space, fundamental definitions related to Whitney towers and their associated trees, geometric Jacobi identities, the classification of order twisted Whitney towers in the –ball and higher-order Arf invariants, and low-order Whitney towers on –spheres in –manifolds and related invariants.
@article{WBLN_2020__7__A4_0, author = {Rob Schneiderman}, title = {Introduction to {Whitney} towers}, journal = {Winter Braids Lecture Notes}, note = {talk:4}, pages = {1--71}, publisher = {Winter Braids School}, volume = {7}, year = {2020}, doi = {10.5802/wbln.36}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.36/} }
Rob Schneiderman. Introduction to Whitney towers. Winter Braids Lecture Notes, Volume 7 (2020), Talk no. 4, 71 p. doi : 10.5802/wbln.36. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.36/
[1] R Budney, J Conant, K P Scannell, D Sinha, New perspectives on self-linking. Adv. Math. 191.1 (2005), 78–113. | DOI | MR | Zbl
[2] J C Cha, Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers, J. Eur. Math. Soc. 12 (2010) 555–610. | DOI | Zbl
[3] J C Cha, Rational Whitney tower filtration of links, Mathematische Annalen (2017) 1–30. | DOI | MR
[4] J C Cha, K Orr,Transfinite Milnor invariants for 3-manifolds, preprint (2020). arXiv:2002.03208 [math.GT]
[5] T Cochran, Derivatives of links, Milnor’s concordance invariants and Massey products, Mem. Amer. Math. Soc. Vol. 84 No. 427 (1990). | DOI | MR | Zbl
[6] T Cochran, K Orr, P Teichner, Knot concordance, Whitney towers and -signatures, Annals of Math., Volume 157 (2003) 433–519. | DOI | Zbl
[7] J Conant, R Schneiderman, P Teichner, Jacobi identities in low-dimensional topology, Compositio Mathematica 143 Part 3 (2007) 780–810. arXiv:math/0401427v2 [math.GT] | DOI | MR | Zbl
[8] J Conant, R Schneiderman, P Teichner, Whitney tower concordance of classical links, Geom. Topol. (2012) 16 (2012) 1419–1479. arXiv:1202.3463 [math.GT] | DOI | MR | Zbl
[9] J Conant, R Schneiderman, P Teichner, Tree homology and a conjecture of Levine, Geom. Topol. 16 (2012) 555–600. arXiv:1012.2780 [math.GT] | DOI | MR | Zbl
[10] J Conant, R Schneiderman, P Teichner, Universal quadratic forms and Whitney tower intersection invariants, Proceedings of the Freedman Fest, Geom. Topol. Monographs 18 (2012) 35–60. arXiv:1101.3480 [math.GT] | DOI | Zbl
[11] J Conant, R Schneiderman, P Teichner, Milnor invariants and twisted Whitney towers, J. Topology, Volume 7, Issue 1, (2013) 187–224. arXiv:1102.0758 [math.GT] | DOI | MR | Zbl
[12] J Conant, R Schneiderman, P Teichner, Clasper concordance, Whitney towers and repeating Milnor invariants, preprint (2020). arXiv:2005.05381 [math.GT]
[13] M Freedman, F Quinn, The topology of –manifolds, Princeton Math. Series 39 Princeton, NJ, (1990). | DOI | Zbl
[14] M Freedman, P Teichner, 4–manifold topology II: Dwyer’s filtration and surgery kernels., Invent. Math. 122 (1995) 531–557. | DOI | MR | Zbl
[15] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory II, Geom. Topol. 3 (1999) 103–118. doi: 10.2140/gt.1999.3.103 | DOI | Zbl
[16] N Habegger, G Masbaum, The Kontsevich integral and Milnor’s invariants, Topology 39 (2000) 1253–1289. | DOI | MR | Zbl
[17] M Kervaire, J Milnor, On –spheres in –manifolds, Proc. Nat. Acad. Sci. Vol. 47 (1961) 1651–1657. | DOI | Zbl
[18] S Konyagin, M Nathanson, Sums of products of congruence classes and of arithmetic progressions, Int. J. Number Theory Vol. 5 Issue 4 (2009) 625–634. | DOI | MR | Zbl
[19] D Kosanović, Embedding Calculus and Grope Cobordism of Knots, preprint (2020) arXiv:2010.05120 [math.GT]
[20] Y Matsumoto, Secondary intersectional properties of –manifolds and Whitney’s trick, Proceedings of Symposia in Pure mathematics Vol. 32 Part 2 (1978) 99–107. | DOI | Zbl
[21] J-B Meilhan, A Yasuhara, Characterization of finite type string link invariants of degree , Math. Proc. Cambridge Phil. Soc. 148:03, 439 (2010). | DOI | Zbl
[22] J Milnor, Link groups, Annals of Math. 59 (1954) 177–195. | DOI | MR | Zbl
[23] J Milnor, Isotopy of links, Algebraic geometry and topology, Princeton Univ. Press (1957). | DOI
[24] K Orr, Homotopy invariants of links, Invent. Math. 95 17 (1989) 379–394. | Zbl
[25] M Powell, A Ray, P Teichner, The 4-dimensional disc embedding theorem and dual spheres, preprint (2020) arXiv:2006.05209v1 [math.GT]
[26] R Schneiderman, Whitney towers and Gropes in 4–manifolds, Trans. Amer. Math. Soc. 358 (2006) 4251–4278. arXiv:math/0310303 [math.GT] | DOI | MR | Zbl
[27] R Schneiderman, Simple Whitney towers, half-gropes and the Arf invariant of a knot, Pacific J. Math. Vol. 222 No. 1, Nov (2005) 169–184. arXiv:math/0310304 [math.GT] | DOI | MR | Zbl
[28] R Schneiderman, Stable concordance of knots in –manifolds, Alg. and Geom. Topology 10 (2010) 37–432. arXiv:0812.4696 [math.GT] | DOI | MR | Zbl
[29] R Schneiderman, P Teichner, Higher order intersection numbers of –spheres in –manifolds, Alg. and Geom. Topology 1 (2001) 1–29. arXiv:math/0008048 [math.GT] | DOI | Zbl
[30] R Schneiderman, P Teichner, Whitney towers and the Kontsevich integral, Proceedings of a conference in honor of Andrew Casson, UT Austin 2003, Geometry and Topology Monograph Series, Vol. 7 (2004) 101–134. arXiv:math/0401441 [math.GT] | DOI
[31] R Schneiderman, P Teichner, Pulling Apart 2–spheres in 4–manifolds, Documenta Math. 19 (2014) 941–992. arXiv:1210.5534 [math.GT] | Zbl
[32] R Schneiderman, P Teichner, Homotopy versus isotopy: spheres with duals in 4–manifolds, preprint (2019) arXiv:1904.12350 [math.GT] | DOI | MR | Zbl
[33] R Stong, Existence of -negligible embeddings in -manifolds: A correction to Theorem 10.5 of Freedman and Quinn, Proc. of the A.M.S. 120 (4) (1994) 1309–1314. | DOI | MR | Zbl
[34] M Weiss, Embeddings from the point of view of immersion theory I, Geom. Topol. 3 (1999), 67–101. doi: 10.2140/gt.1999.3.67 | DOI | Zbl
[35] M Yamasaki, Whitney’s trick for three –dimensional homology classes of –manifolds, Proc. Amer. Math. Soc. 75 (1979) 365–371. | DOI | MR | Zbl
Cited by Sources: