These are the extended notes of a mini-course given at the school WinterBraids X. We discuss algebras simultaneously related to: the braid group, the Yang–Baxter equation and the representation theory of quantum groups. The main goal is to explain the idea of the fusion procedure for the Yang–Baxter equation and to show how it leads to new examples of such algebras: the fused Hecke algebras.
@article{WBLN_2020__7__A3_0, author = {Lo{\"\i}c Poulain d{\textquoteright}Andecy}, title = {Fusion for the {Yang{\textendash}Baxter} equation and the braid group}, journal = {Winter Braids Lecture Notes}, note = {talk:3}, pages = {1--49}, publisher = {Winter Braids School}, volume = {7}, year = {2020}, doi = {10.5802/wbln.35}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.35/} }
TY - JOUR AU - Loïc Poulain d’Andecy TI - Fusion for the Yang–Baxter equation and the braid group JO - Winter Braids Lecture Notes N1 - talk:3 PY - 2020 SP - 1 EP - 49 VL - 7 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.35/ DO - 10.5802/wbln.35 LA - en ID - WBLN_2020__7__A3_0 ER -
%0 Journal Article %A Loïc Poulain d’Andecy %T Fusion for the Yang–Baxter equation and the braid group %J Winter Braids Lecture Notes %Z talk:3 %D 2020 %P 1-49 %V 7 %I Winter Braids School %U https://proceedings.centre-mersenne.org/articles/10.5802/wbln.35/ %R 10.5802/wbln.35 %G en %F WBLN_2020__7__A3_0
Loïc Poulain d’Andecy. Fusion for the Yang–Baxter equation and the braid group. Winter Braids Lecture Notes, Volume 7 (2020), Talk no. 3, 49 p. doi : 10.5802/wbln.35. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.35/
[1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47–72. | DOI | Zbl
[2] E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. | DOI | MR | Zbl
[3] H. Au-Yang and J.H.H. Perk, Onsager’s star-triangle equation: Master key to integrability, Advanced Studies in Pure Mathematics 19 (1989) 57–94. | DOI | Zbl
[4] J.H.H. Perk and H. Au-Yang, Yang–Baxter Equation, in Encyclopedia of Mathematical Physics, eds. J.-P. Françoise, G.L. Naber and Tsou S.T., Oxford: Elsevier, 2006, Vol. 5, pp. 465–473. | DOI
[5] M.T. Batchelor, The importance of being integrable: Out of the paper, into the lab, Int. J. Mod. Phys. B 28.18 (2014) 1430010. | DOI | MR
[6] M.T. Batchelor and A. Foerster, Yang–Baxter integrable models in experiments: from condensed matter to ultracold atoms, J. Phys. A: Math. Theor 49.17 (2016): 173001. | DOI | MR | Zbl
[7] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press (1982). | DOI | Zbl
[8] J. S. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), 249–273. | DOI | MR
[9] F. Bohnenblust, The algebraical braid group, Ann. of Math. (2) 48 (1947), 127–136. | DOI | MR | Zbl
[10] S. Boukraa and J.M. Maillard, Let’s Baxterise, J. Stat. Phys. 102 (2001) 641. | DOI | Zbl
[11] V. Chari and A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991) 261–283. | DOI | MR | Zbl
[12] V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press (1995). | Zbl
[13] V. Chari and A. Pressley, Minimal affinizations of representations of quantum groups: the simply laced case, J. Algebra 184.1 (1996) 1–30. | DOI | MR | Zbl
[14] E. Chavli, Universal deformations of the finite quotients of the braid group on 3 strands, J. Algebra 459 (2016), 238–271. | DOI | MR | Zbl
[15] Y. Cheng, M.L. Ge and K. Xue, Yang–Baxterization of Braid Group Representations, Commun. Math. Phys. 136 (1991) 195. | DOI | MR | Zbl
[16] I. Cherednik, On special bases of irreducible finite-dimensional representations of the degenerate affine Hecke algebra, Funct. Anal. Appl. 20 (1986), 87–89. | DOI | MR
[17] H.S.M. Coxeter, Factor groups of the braid groups, Proc. Fourth Canad. Math. Congress (1957), 95–122.
[18] N. Crampe, L. Frappat, E. Ragoucy and M. Vanicat, A new braid-like algebra for Baxterisation, Comm. Math. Phys. 349 (2017) 271. | DOI | MR | Zbl
[19] N. Crampe and L. Poulain d’Andecy, Fused braids and centralisers of tensor representations of , Algebr. Represent. Theor. (2022). https://doi.org/10.1007/s10468-022-10116-7 | DOI
[20] N. Crampe and L. Poulain d’Andecy, Baxterisation of the fused Hecke algebra and -matrices with -symmetry, Lett. Math. Phys. 111 (2021), no. 4, Paper No. 92, 21 pp. | DOI | MR | Zbl
[21] V.G. Drinfeld, Hopf algebras and the Yang–Baxter quantum equation, Dokl. Akad. Nauk SSSR. Vol. 283. No. 5. (1985). | DOI
[22] V.G. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians (A.M. Gleason, ed.), Amer. Math. Soc. (1986) 798–820.
[23] P. Etingof, I. Frenkel, A.A. Kirillov, Lectures on representation theory and Knizhnik–Zamolodchikov equations, No. 58, American Mathematical Soc. (1998). | DOI | Zbl
[24] L.D. Faddeev, How Algebraic Bethe Ansatz works for integrable model, arXiv:hep-th/9605187
[25] L.D. Faddeev, E.K. Sklyanin, L.A. Takhtadzhyan, Quantum inverse problem method I, Theor. and Math. Phys. 40 (1979) 86. | DOI | MR | Zbl
[26] I. Frenkel, N. Reshetikhin, Quantum affine algebras and holonomic difference equations, Commun. Math. Phys. 146 (1992), 1–60. | DOI | MR | Zbl
[27] P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. | DOI | MR | Zbl
[28] W. Fulton, J. Harris, Representation theory: a first course, Springer (1991). | Zbl
[29] M. Geck, G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras. London Mathematical Society Monographs, 21, Oxford University Press, 2000. | Zbl
[30] C. Gomez, M. Ruiz-Altaba and G. Sierra, Quantum groups in two-dimensional physics, Cambridge University Press (1996). | DOI | Zbl
[31] R. Goodman and R. Wallach, Symmetry, representations, and invariants, Springer (2009). | DOI | Zbl
[32] J. A. Green, Polynomial representations of , Lecture Notes in Mathematics, Vol. 830, Springer, 1980. | DOI
[33] X.-W. Guan, M. T. Batchelor, C. Lee, Fermi gases in one dimension: From Bethe ansatz to experiments, Rev. Modern Phys. 85.4 (2013): 1633 | DOI
[34] D. Hernandez, Advances in R-matrices and their applications (after Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,...), (2017) arXiv:1704.06039.
[35] A. Isaev, A. Molev and A. Os’kin, On the idempotents of Hecke algebras, Lett. Math. Phys. 85 (2008), 79–90. ArXiv:0804.4214 | DOI | MR | Zbl
[36] A. Isaev, O. Ogievetsky, On Baxterized solutions of reflection equation and integrable chain models, Nucl. Phys. B 760[PM] (2007) 167–183. | DOI | MR | Zbl
[37] M. Jimbo, A -difference analogue of and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63–69. | DOI | Zbl
[38] M. Jimbo, A q-Analogue of , Hecke algebra, and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986), 247–252. | DOI | MR | Zbl
[39] M. Jimbo, Introduction to the Yang–Baxter equation, in “Braid Group, Knot Theory And Statistical Mechanics” 9 (1991) 111. | DOI
[40] M. Jimbo (Editor), Yang-Baxter equation in integrable systems, Vol. 10. World Scientific, (1990). | DOI | Zbl
[41] M. Jimbo, T. Miwa, Algebraic analysis of solvable lattice models, American Mathematical Soc. Vol. 85 (1994). | DOI | Zbl
[42] V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Annals of Math. 126 (1987), no. 2, 335–388. | DOI | MR | Zbl
[43] V.F.R. Jones, On a Certain Value of the Kauffman Polynomial, Commun. Math. Phys. 125(1989) 459. | DOI | MR | Zbl
[44] V.F.R. Jones, Baxterization, Int. J. Mod. Phys.B 4 (1990) 701, proceedings of “Yang–Baxter equations, conformal invariance and integrability in statistical mechanics and field theory”, Canberra, 1989.
[45] C. Kassel, Quantum groups, Springer (1995). | DOI | Zbl
[46] C. Kassel, M. Rosso, V. Turaev, Quantum groups and knot invariants, Panoramas and Syntheses 5, Société Mathématique de France, Paris, 1997. vi+115 pp. | Zbl
[47] C. Kassel, V. Turaev, Braid groups, Graduate Texts in Mathematics, Vol. 247, Springer, 2008. | DOI
[48] L.H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. | DOI | MR | Zbl
[49] A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Springer, 2012. | Zbl
[50] V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press (1993). | DOI | Zbl
[51] P.P. Kulish, N. Manojlović and Z. Nagy, Symmetries of spin systems and Birman–Wenzl–Murakami algebra, J. Math. Phys. 51 (2010) 043516. | DOI | MR | Zbl
[52] P.P. Kulish, N.Y. Reshetikhin, Quantum linear problem for the sine-Gordon equation and higher representations, J. Soviet Math. 23(4) (1983) 2435–2441. | DOI
[53] P.P. Kulish, N.Y. Reshetikhin and E.K. Sklyanin, Yang–Baxter equations and representation theory. I, Lett. Math. Phys. 5 (1981) 393-403. | DOI | MR | Zbl
[54] I. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Applied Algebra 216 (2012), 2754–2782 | DOI | MR | Zbl
[55] I. Marin, A maximal cubic quotient of the braid algebra I, J. Algebra (2020). | DOI | MR | Zbl
[56] J.B. McGuire, Study of exactly solvable one-dimensional -body problems, J. Math. Physics, 5 (1964) 622–636. | DOI | MR | Zbl
[57] A. Molev, On the fusion procedure for the symmetric group, Reports Math. Phys. 61 (2008), 181–188. ArXiv:math/0612207 | DOI | MR | Zbl
[58] H. Morton, A basis for the Birman–Wenzl algebra, math.QA/1012.3116, (2010). | DOI | MR
[59] J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987) 745–758. | Zbl
[60] J. Murakami, Solvable lattice models and algebras of face operators, Adv. Studies in Pure Math. 19 (1989) 399–415 | DOI
[61] M. Nazarov, Yangians and Capelli identities, in: “Kirillov’s Seminar on Representation Theory” (G. I. Olshanski, Ed.) Amer. Math. Soc. Transl. 181, Amer. Math. Soc., Providence, RI, (1998), 139–163. ArXiv:q-alg/9601027 | DOI
[62] L. Onsager, Crystal Statistics I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65 (1944) 117–149 | DOI | MR | Zbl
[63] L. Poulain d’Andecy, Fusion formulas and fusion procedure for the Yang–Baxter equation, Algebr. Represent. Theor. (2017), 20: 1379. | DOI | MR | Zbl
[64] J.H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), no. 2, 115–139. | Zbl
[65] N. Yu. Reshetikhin, L. A. Takhtajan and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1, no. 1, (1989) 178–206 (in Russian). English translation in: Leningrad Math. J. 1, no. 1 (1990) 193–225. | DOI
[66] E.K. Sklyanin, Some algebraic structures connected with the Yang–Baxter equation, , Funct. Anal. Appl, 16(4) (1982) 263-270. | DOI | MR | Zbl
[67] T.G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math., 92 (1988) 527–553. | DOI | MR | Zbl
[68] H. Weyl, The classical groups, their invariants and representations, Princeton University Press (1946). | DOI | Zbl
[69] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive -function interaction, Phys. Rev. Lett. 19 (1967) 1312. | DOI | MR
[70] C. N. Yang, -matrix for the one-dimensional -body problem with repulsive or attractive -function interaction, Phys. Rev. 168 (1968) 1920. | DOI
[71] A. B. Zamolodchikov, A. B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Annals of Physics 120 (1979) 253–291. | DOI | MR
[72] R.B. Zhang, M.D. Gould, A.J. Bracken, From representations of the braid group to solutions of the Yang–Baxter equation, Nucl. Phys. B 354 (1991) 625. | DOI | MR
Cited by Sources: