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Introduction to Whitney towers

ROB SCHNEIDERMAN

Abstract

These introductory notes on Whitney towers in 4-manifolds, as developed in collaboration with
Jim Conant and Peter Teichner, are an expansion of three expository lectures given at the Winter
Braids X conference February 2020 in Pisa, Italy. Topics presented include local manipulations of
surfaces in 4–space, fundamental definitions related to Whitney towers and their associated trees,
geometric Jacobi identities, the classification of order n twisted Whitney towers in the 4–ball and
higher-order Arf invariants, and low-order Whitney towers on 2–spheres in 4–manifolds and related
invariants.

Introduction

These notes are an expansion of three introductory lectures given at the Winter Braids X
conference February 2020 in Pisa, Italy describing a theory of Whitney towers on immersed
surfaces in 4-manifolds, as developed in collaboration with Jim Conant and Peter Teichner. A
Whitney tower is built on an immersed surface by iteratively adding Whitney disks pairing
intersection points among the “higher-order” layers of Whitney disks and the surface (see
section 1.8). The theory’s main goal is to use Whitney towers to gain topological information
about the underlying immersed surface. These notes are focussed on providing a detailed
introduction to the theory while simultaneously describing some open problems.

Section 1 covers local manipulations of surfaces and Whitney disks in 4-space, and fun-
damental definitions related to Whitney towers, including the associated trivalent trees that
organize Whitney towers. This section culminates with the description of a geometric Jacobi
Identity in the setting of Whitney towers.
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Section 2 describes the classification of order n twisted Whitney towers on properly im-
mersed disks in the 4-ball, which illustrates the order-raising intersection-obstruction theory
and leads to the formulation of open problems related to certain higher-order Arf invari-
ants which are invariants of classical link concordance. Here the trees associated to Whitney
towers are seen to represent invariants in abelian groups related to Milnor’s classical link
invariants.

Section 3 reviews the classical intersection and self-intersection (order 0) homotopy in-
variants of 2-spheres in a 4-manifold X before introducing order 1 generalizations of these
invariants in the setting of Whitney towers. Here new subtleties coming from π1X and π2X
enter the picture. The end of this section describes open problems on the realization of the
order 1 invariants when X is closed and π1X is non-trivial.

The appendix section 4 provides additional material related to Section 2 and Section 3 in
the form of outlines and/or details of proofs of results from those sections.

Exercises appear at the end of each section.
Sections 2 and 3 are largely independent of each other, but both depend on Section 1.
Conventions: Manifolds and submanifolds are assumed to be smooth, with generic inter-

sections, unless otherwise specified, and during cut-and-paste constructions corners will be
assumed to be rounded. The discussion throughout will also hold in the flat topological cate-
gory via the notions of 4-dimensional topological tranversality from [13, chap.9]. Orientations
will usually be assumed but suppressed unless needed.

Acknowledgments: The author is supported by a Simons Foundation Collaboration Grant
for Mathematicians. Also thanks to the organizers of the Winter Braids X conference, and of
course collaborators Jim Conant and Peter Teichner.
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1. Disks in the 4-ball

This section focuses on local manipulations of surfaces in 4-space, and fundamental defini-
tions related to Whitney towers, including the associated trivalent trees that organize Whit-
ney towers. The section culminates with the description of a geometric Jacobi Identity in the
setting of Whitney towers, followed by exercises related to the material covered here.

Throughout, the word “disk” means the 2-disk D2. A sheet of a surface in a 4-manifold is
an embedded disk which is the properly embedded intersection of the surface with a 4-ball.
Here a proper map sends boundary to boundary, and sends interior to interior. Following the
tradition of Knot Theory, we will usually blur the distinction between a map and its image
up to isotopy. In the case that the boundary ∂D of an immersed disk D is contained in the
interior of an immersed surface A, we require and assume that ∂D is embedded, and also
that the interior of D is disjoint from A near ∂D, i.e. that there exists a collar in D of ∂D such
that the intersection of this collar with A is equal to ∂D. Orientations of surfaces and signs of
intersection points will mostly be suppressed from notation.
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1.1. Local coordinates

Figure 1.1 shows two properly embedded disks A and B in the 4-ball B4 = B3 ×  which have
a single transverse intersection point p = A ô B. In this figure the -parameter increases from
left to right, and each B3-slice B3 × t for t ∈  intersects each disk in an arc. Thus A ∪ B
is the track of a homotopy of arcs in B3 which fixes the vertical black arc tracing out B, and
isotopes the horizontal blue arc tracing out A from “front to back”, realizing a crossing change
at p = A ô B.

B

Ap

B

A

B

A

Figure 1.1. Disks A and B in B4 = B3 ×  with p = A ô B.

In the interest of avoiding visual clutter, we do not attempt to show the boundary of B3

in any slice. So it is understood that the endpoints of the arcs lie in ∂B3 × t for all t, since
A and B are each properly embedded. Thus, to correctly interpret each picture in the movie
one can either imagine the existence of the invisible 2-sphere ∂B3 × t containing the visible
endpoints of the arcs, or one can assume that the arcs continue further outside the picture
until eventually reaching ∂B3 × t which is lying outside the picture.

Thinking of the parameter t as “time”, we say that in Figure 1.1 the transverse intersection
p = A ô B is contained in the present slice B3 × 0 ⊂ B3 × , and that both disks extend as arcs
into past B3 × −ε and future B3 × +ε. When describing surface sheets in this way we usually
do not specify the endpoints of the interval , which can be reparametrized as desired.

p

B

A

B B

Figure 1.2. A and B in B4 = B3 ×  with p = A ô B and A ⊂ B3 × 0.

Figure 1.2 shows a different view of the same 4-ball neighborhood of p = A ô B by changing
coordinates and/or isotopy. In this figure the disk A is now contained in the present B3 × 0 ⊂
B3 × , while B is still described by a fixed vertical arc times . This view has the advantage of
being completely described by just the present slice.

Again, A and B are each properly embedded in B4. So the rectangular appearance of A is
either understood to extend further out of the picture until reaching the boundary 2-sphere of
B3 × 0, or we can just take each B3 × t to be a solid cube (with invisible PL boundary sphere).

Note that the transverse intersection p appears as a small “puncture” in the sheet A. This
is just a visual device to help place the location of p in A. Also, the A-sheet is shown here
as translucent, with a sub-arc of B visible “behind” A. In general, sheets in the present may
appear translucent or opaque depending on which view provides a better clarification of the
given configuration of sheets.

IV–4



Course no IV— Introduction to Whitney towers

1.2. Signs of intersections

The sign εp ∈ {+,−} of an intersection p between oriented sheets A and B in an oriented 4-
manifold X is defined to be + (respectively, −) if the orientation of X at p agrees (respectively,
disagrees) with the concatenation of the orientations of A and B at p.

1.3. Finger moves

A finger move is a regular homotopy supported near a guiding arc that creates a pair of
oppositely-signed intersections between two sheets. This is illustrated in Figure 1.3 which
shows a “movie of movies” starting from the disjoint sheets in the bottom and ending with
the intersecting sheets in the top row. Each row shows the same 4-ball, with the bottom
row showing the disjoint sheets before the finger move. Vertically and horizontally adjacent
pictures are understood to be connected by smooth interpolations of the black arcs, with
the vertical parameter corresponding to the homotopy, and the horizontal parameter corre-
sponding to the -parameter of B4 = B3 ×  as in the previous figures. Between the middle
row and the top row a single non-transverse tangential intersection will occur in the center
picture at one moment of the homotopy.

qp

F
in

ge
r 

m
ov

e

Figure 1.3. A finger move guided by the red dashed arc.

Usually only the center top and/or center bottom pictures as in Figure 1.4 will be shown,
with the other nearby and interpolating pictures shown in Figure 1.3 understood. Note that
p and q have opposite signs for any choice of orientations on A, B and the ambient 4-ball
(Exercise 1.22.4).

A finger move is supported in a 4-ball neighborhood of its guiding arc, so this picture also
describes a finger move on two sheets in an arbitrary 4-manifold. Since this neighborhood
can be taken to be arbitrarily close to the guiding arc, it may be assumed that the support
of a finger move is disjoint from any other surfaces, and hence only creates the pair of
intersections. Up to isotopy, a finger move is symmetric in the two sheets (Exercise 1.22.3).

1.4. Whitney disks

Let p and q be oppositely-signed transverse intersections between connected properly im-
mersed surfaces A and B in a 4–manifold X, with p and q joined by embedded interior arcs
 ⊂ A and b ⊂ B which are disjoint from all other singularities in A and B. We allow the pos-
sibility that A = B, in which case the circle  ∪ b must be embedded and change sheets at p
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qp

Figure 1.4. Before (left) and after (right) a finger move: The center-bottom
and center-top pictures from Figure 1.3.

and q. Any immersed disk W in the interior of X bounded by such a Whitney circle  ∪ b is a
Whitney disk pairing p and q.

For any collection W of Whitney disks pairing oppositely-signed p, q ∈ A ô B we require
that the union ∪∂W of Whitney circles is embedded. This can always be arranged by con-
trolled isotopies of the W (Exercise 1.22.14).

W

B
A =p q

A
B

W
qp

Figure 1.5. Two views of a model Whitney disk W pairing p, q = A ô B.

Figure 1.5 shows a model Whitney disk W on sheets A and B in a 4-ball. In general, a
Whitney disk in a 4-manifold has a neighborhood obtained by introducing plumbings [13,
1.2] into the model Whitney disk. So a Whitney disk may have interior self-intersections
and intersections with other surfaces, but has an embedded collar which is disjoint from all
surfaces, except for its boundary arcs  ⊂ A and b ⊂ B.

An embedded Whitney disk whose interior is disjoint from all surfaces is called a clean
Whitney disk.

1.5. Framed and twisted Whitney disks.

Let W be a Whitney disk pairing intersections p, q ∈ A ô B, with boundary ∂W =  ∪ b, for
embedded arcs  ⊂ A and b ⊂ B. Denote by νXW|∂W the restriction to ∂W of the normal
disk-bundle νXW of W in X. Since p and q have opposite signs, νXW|∂W admits a nowhere-
vanishing Whitney section ∂W defined by taking vectors tangent to A over , and extending
over b by vectors which are normal to B, as shown in the left of Figure 1.6.

The right side of Figure 1.6 shows ∂W inside an embedding into 3–space of νXW|∂W ∼= S1 ×
D2. Although this choice of embedding has ∂W corresponding to the 0-framing of D2×S1 ⊂ R3,
the section of νXW|∂W determined (up to homotopy) by the canonical framing of νXW will in
general differ by full twists relative to ∂W. (If p and q had the same sign then there would
have to be a half-twist in the sheets of A and B, so the (continuous) Whitney section ∂W could
not exist.)

If ∂W extends to a nowhere-vanishing section W of νXW, then W is said to be framed (since
a disk-bundle over a disk has a canonical framing, and a nowhere-vanishing normal section
over an oriented surface in an oriented 4–manifold determines a framing up to homotopy).
In general, the obstruction to extending ∂W to a nowhere vanishing section of νXW is the
relative Euler number χ(νXW,∂W) ∈ Z, called the twisting of W and denoted ω(W), so W is
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∂W

pq

A
B

a

b

B

A

Figure 1.6. Left: Near a Whitney disk W pairing p, q ∈ A ô B, with ∂W =  ∪ b,
a Whitney section ∂W is shown in blue. This picture is accurate near ∂W; in
general, the interior of the evident (but not explicitly indicated) embedded
W bounded by  ∪ b may have self-intersections as well as intersections with
other surfaces. The line segments transverse to  in A indicate the correspon-
dence with the right-hand picture of the normal disk-bundle νXW|∂W. Right:
The blue Whitney section ∂W is shown inside an embedding into 3–space of
νXW|∂W ∼= S1 × D2, with the sheets A and B indicated by line segments trans-
verse to ∂W. The A-sheet cuts the front solid torus horizontally, while the
B-sheet cuts the back of the solid torus vertically. The line segments trans-
verse to b in B extend into past and future in the left-hand picture.

framed if and only if ω(W) = 0. The twisting ω(W) can be computed by taking the intersection
number of the zero section W with any extension W of ∂W over W, so it does not depend on an
orientation choice for W (since switching the orientation on W also switches the orientation
of W). And ω(W) is also unchanged by switching the roles of  and b in the construction of
∂W, since interchanging the “tangent to...” and “normal to...” parts in the construction yields
an isotopic section in νXW|∂W (isotopic through non-vanishing sections).

A Whitney disk W with ω(W) 6= 0 is called a twisted Whitney disk.

1.6. Parallel Whitney circles and disks

The twisting ω(W) of W, which is the element of π1(SO(2)) ∼= Z determined by a Whitney
section as described above, can also be computed using any section ∂W of νXW|∂W such that
∂W is in the complement of the tangent spaces of both A and B, since such ∂W will have the
same number of rotations as a Whitney section (relative to the longitude determined by the
canonical framing of νW); see Figure 1.6.

In these notes a parallel Whitney circle will refer to either these “nowhere tangent” sec-
tions, or the standard sections in section 1.5.

A disk is parallel to a Whitney disk if it is the extension of a parallel Whitney circle over the
Whitney disk.

1.7. Whitney moves

Figure 1.7 describes a model Whitney move: In a 4–ball neighborhood of a framed embedded
Whitney disk W, a pair of oppositely-signed transverse intersections p and q between surface
sheets A and B is eliminated by a regular homotopy which isotopes one of the sheets across
the clean framed W.
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Combinatorially, the result of this Whitney move is constructed by deleting a regular neigh-
borhood (in its sheet) of one arc of ∂W and replacing this neighborhood with a Whitney bubble
over that arc. This Whitney bubble is formed from two parallel copies of W connected by a
rectangular strip which is normal to a neighborhood (in its sheet) of the other arc. Figure 1.7
shows the result of adding a Whitney bubble to the sheet A. Although both these descriptions
of the Whitney move involve a choice of arc of ∂W, up to isotopy the result is independent of
this choice (Exercise 1.22.5).

A Whitney move on a clean framed W in a 4-manifold X is described by any embedding
of this model into X which preserves the product structures and transversality of the sheets
and W.

A

B

W

qp
A

B

Figure 1.7. Left: W pairing p, q = A ∩ B. Right: A Whitney move guided by W.

In general, a Whitney move on an arbitrary Whitney disk W is described using the com-
binatorial description of adding a Whitney bubble to one sheet: The Whitney bubble is still
formed from two parallel copies of W together with a rectangular strip, and the intersections
paired by W will still be eliminated by the Whitney move, but the following new intersections
will be created. Each intersection r ∈ W ô C between the interior of W and a sheet C of an-
other surface will give rise to two new intersections r′ and r′′, as shown in Figure 1.8; each
self-intersection of W will give rise to four new self-intersections; and if W is twisted, then
|ω(W)|-many new self-intersections will be created corresponding to intersections between
the two parallel copies of W in the Whitney bubble (see Exercise 1.22.7).

W

A

B

C

p
q A

B

C

r r' r''

Figure 1.8

In our settings we will generally be able to arrange that Whitney disks are embedded and
framed at the cost of creating interior intersections with sheets of other surfaces, so the
Whitney move shown in Figure 1.8 will be the most relevant.
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1.8. Whitney towers

Figure 1.9. Left: Four sheets and two Whitney disks in a 4-ball. Right: With
the tree associated to the unpaired intersection.

A “successful” Whitney move eliminates the pair of intersections paired by the Whitney
disk without creating any new intersections. Since this requires a clean framed Whitney disk,
it is natural to try to somehow count interior intersections and twistings in an attempt to
measure the obstructions to the existence of a homotopy of an immersed surface to an
embedding.

Whenever these “higher-order intersections” can be paired by “higher-order Whitney disks”
there is hope that they might be eliminated by successful “higher-order Whitney moves”, so
one is led to construct a tower of Whitney disks by iteratively pairing up as many intersections
as possible. As new Whitney disks are chosen, new intersections and twistings can appear
which in turn need to be counted. We will see that invariants of the resulting Whitney tower
can yield information about the bottom level immersed surface on which the tower is built.

As a basic example, the left side of Figure 1.9 shows four sheets in B4 supporting a Whitney
tower: The two intersections between red and blue are paired by a Whitney disk which itself
has two interior intersections with green that are paired by another Whitney disk. This second
Whitney disk has a single interior intersection with yellow that appears to be a “robust”
obstruction to successfully homotoping these sheets rel boundary to be disjointly embedded
in this 4-ball. In fact, we will see in Section 2 that this unpaired higher-order intersection does
indeed represent such an obstruction (Exercise 2.13.7).

We can now state the general definition of a Whitney tower:

Definition 1.1. A Whitney tower on A2 £ X4 is defined by:

(i) A itself is a Whitney tower.

(ii) If W is a Whitney tower and W is a Whitney disk pairing intersections in W, then the
union W ∪W is a Whitney tower.

In a Whitney tower the Whitney disk boundaries are required to be pairwise disjointly
embedded (section 1.4).

Having constructed a Whitney tower by adding some number of Whitney disks as per the
definition, we call the properly immersed surface A the underlying surface of the Whitney
tower, and say that A supports the Whitney tower. The “boundary of W” is the boundary of
A. We assume that A comes with a given orientation, and that W is oriented by choosing
(arbitrarily) and fixing orientations of all the Whitney disks in W. Specific orientations and
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signs will generally be suppressed from notation and discussion until needed, and at a first
reading can be safely ignored while absorbing the combinatorics of Whitney towers.

Our underlying surfaces A will always be collections of disks or annuli or spheres, with
components A indexed by  ∈ {1,2, . . . ,m}.

Definition 1.1 describes a very general notion of Whitney tower, and all of the figures
so far give very basic examples that satisfy this definition. Structure will emerge upon the
introduction of the unitrivalent trees that organize Whitney towers (Figure 1.9 right, and
Figure 1.10 bottom-right), and we will see that Whitney towers are interesting in their own
right, as well as providing information about their underlying surfaces.

Ai i i i

Figure 1.10. Zig-zagging down from top-left to bottom-left: Splitting a Whit-
ney tower by finger moves. Bottom-right: The trees (blue) associated to un-
paired intersections.

As motivation for introducing formalism to organize Whitney towers, Figure 1.10 shows
how after “splitting” a Whitney tower by finger moves it can be arranged that all of its sin-
gularities are contained in regular neighborhoods of unitrivalent trees, with each Whitney
disk containing only one “problem” (un-paired intersection or Whitney disk boundary-arc). In
section 4.3 this notion of splitting is described precisely and extended to include splitting of
twisted Whitney disks.
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1.9. Trees

A tree will always refer to a finite oriented unitrivalent tree, where the orientation of a tree is
given by cyclic orderings of the adjacent edges around each trivalent vertex. Univalent ver-
tices will usually be labeled from the index set {1,2,3, . . . ,m}, which will always correspond
to the connected components of a properly immersed surface A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Am £
(X, ∂X) supporting a Whitney tower. Trees are considered up to isomorphisms which preserve
labels and orientations.

We identify formal non-associative iterated bracketings of elements from the index set
{1,2,3, . . . ,m} with rooted trees, which have each univalent vertex labeled by an element
from the index set, except for one root univalent vertex which is left unlabeled. So for in-
stance the bracket (, j) denotes the rooted tree 

j >−−, for , j ∈ {1,2,3, . . . ,m}; and inductively

(, J) denotes 
J >−−, where  and J denote bracketings/rooted trees. This is formalized in the

first part of the following definition:

Definition 1.2. Let  and J be two rooted trees.

(i) The rooted product (, J) is the rooted tree gotten by identifying the root vertices of
 and J to a single vertex  and sprouting a new rooted edge at . This operation
corresponds to the formal bracket (Figure 1.11 upper right). The orientation of (, J)
is inherited from those of  and J, and at  by the (left-to-right) ordering of the bracket
product.

(ii) The inner product 〈, J〉 is the (unrooted) tree gotten by identifying the roots of  and
J to a single non-vertex point. Note that 〈, J〉 inherits an orientation from  and J, and
that all the univalent vertices of 〈, J〉 are labeled. (Figure 1.11 lower right.)

I 1

I1

I ( I , J )
I2

( I1 , I2 )
I2

=

J
1

J1

J
J2

( J1 , J2 )

J2

=
I1

I , J
I2J1

J2

Figure 1.11. The rooted product (, J) and inner product 〈, J〉 of  = (1, 2)
and J = (J1, J2). All trivalent orientations correspond to a counterclockwise
orientation of the plane.

1.10. Trees for Whitney disks and intersection points

Let A = A1, . . . , Am £ (X, ∂X) be a properly immersed surface supporting a Whitney tower W
(oriented), where the A are the connected components of A.

To each component A is associated the rooted tree −−−  consisting of a single edge with
one vertex labeled by , and to each transverse intersection p ∈ A ô Aj is associated the
tree tp := 〈  , j 〉 =  −−− j consisting of an edge with vertices labeled by  and j. Note that for
singleton brackets (rooted edges) we drop the bracket from notation, writing  for (  ).

The rooted Y-tree (, j) = 
j>−−, with a single trivalent vertex and two univalent labels  and j,

is associated to any Whitney disk W(,j) pairing intersections between A and Aj. This rooted
tree can be thought of as being embedded in W, with its trivalent vertex and rooted edge
sitting in W(,j), and its two other edges descending into A and Aj as sheet-changing paths
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(Figure 1.12 left). The cyclic orientation at the trivalent vertex corresponds to the orientation
of W(,j) via orientation conventions that will be described in section 1.19.

Note that Figure 1.12 shows the j-labeled univalent vertex of the tree (, j) in the present,
but this j-labeled edge changes sheets into Aj so the j-labeled univalent vertex is really in the
past or future.

(i , j)

i

j

W

A

A
i

j

i

j

W

A

A
i

j

p
kA

(i,j)

k

Figure 1.12. Left: The rooted tree (, j) ⊂ W associated to W(,j) (oriented
counter-clockwise from the reader’s point of view). Right: The unrooted tree
tp = 〈((, j), k)〉 ⊂ W associated to p ∈W(,j) ô Ak.

Associated to any transverse intersection p ∈W(,j) ô Ak is the unrooted tree

tp = 〈(, j), k〉 = 
j>−− k,

as illustrated in Figure 1.12 right. We take the root vertex of each of the rooted trees associ-
ated to W(,j) and Ak to be at p, so the inner product tp = 〈(, j), k〉 is realized geometrically as
the union 

j >−− ∪p −−k of these rooted trees in W.
Recursively, the rooted tree (, J) is associated to any Whitney disk W(,J) pairing intersec-

tions between W and WJ (see left-hand side of Figure 1.13); with the understanding that
if, say,  is just a singleton , then W = W denotes the surface component A. And to any

K
p

(I,J)

I

J

W

WJ

W

W

W
IW

Figure 1.13

transverse intersection p ∈W(,J) ∩WK between W(,J) and any WK is associated the unrooted
tree tp := 〈(, J), K〉 (see right-hand side of Figure 1.13).

The above description of the trees tp ⊂ W can always be arranged to be disjointly embed-
ded in W, for any number of unpaired intersections in W (Exercise 1.22.15).

1.11. Twisted trees for twisted Whitney disks

So far we have associated rooted trees to Whitney disks, and unrooted trees to unpaired
intersection points. Recall from section 1.5 that a Whitney disk WJ with non-zero twisting

IV–12



Course no IV— Introduction to Whitney towers

ω(WJ) 6= 0 ∈ Z is said to be twisted. To keep track of twisted Whitney disks, we introduce one
more type of tree:

For any rooted tree J, define the -tree

J := J −−

by labeling the root of J with the “twist” symbol . These -trees are called twisted trees
since they are associated to twisted Whitney disks:

To each twisted Whitney disk WJ ⊂ W we associate the twisted tree J .

1.12. ‘Framed tree’ terminology

Since twisted trees are associated to twisted Whitney disks, for clarity we will sometimes
refer to the unrooted trees tp associated to intersection points as “framed” trees. In fact,
section 4.3 shows that it can always be arranged that every unpaired intersection p ∈ W
is an intersection between framed Whitney disks or surface components. (Also, “framed” is
more succinct than “non- unrooted” or “not-twisted unrooted”.)

1.13. Intersection forests of Whitney towers

The above-described associations of trees capture the essential structure of Whitney towers,
and the following key definition will be useful for both controlling constructions and defining
invariants:

Definition 1.3. The intersection forest t(W) of a Whitney tower W is the multiset of signed
trees associated to unpaired intersections p ∈ W and Z-coefficient -trees associated to
twisted Whitney disks WJ ⊂ W:

t(W) :=
∑

εp · tp +
∑

ω(WJ) · J

with εp ∈ {+,−} the usual sign of the transverse intersection point p, and ω(WJ) ∈ Z the
twisting of WJ.

Here the formal sums are over all unpaired p and all twisted WJ in W. In fact, by splitting
twisted Whitney disks (section 4.3) it can be arranged that all ω(WJ) = ±1, just like the signs
of the p.

In some papers t(W) is notated as a disjoint union rather than a formal sum. Regardless
of notation choice, it is helpful to think of t(W) as being embedded in W as per Figures 1.12
and 1.13 (and Exercise 1.22.15), since modifications of Whitney towers are described in
terms of changes to t(W), and these modifications correspond to relations in the targets of
invariants represented by t(W) that live in abelian groups generated by trees.

Remark 1.4 (Key Question). Given a properly immersed surface A in a 4-manifold, con-
structing a Whitney tower W on A involves many possible choices of Whitney disks, and
since the essential structure of W is contained in t(W), it is natural to ask: “What does t(W)
tell us about A?”. Various answers to this question have been found, as will be illustrated by
results throughout these notes. More answers are waiting to be discovered...

1.14. Examples

It will be shown in Lemma 2.11 that for any multiset of signed trees there exists a link L ⊂ S3

bounding immersed disks into B4 supporting a Whitney tower W such that t(W) is equal to
the given multiset of signed trees.

On the other hand, Exercise 2.13.10 will show that there exist restrictions on the possible
t(W) for a Whitney tower W on immersed 2-spheres in B4.

Some basic examples follow:
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W

p

1

D3 D3

D2 D2

L2

L1

L3

D

(1,2)

Figure 1.14

1.14.1.

Moving radially into B4 from left to right, Figure 1.14 shows the Borromean Rings L = L1 ∪
L2 ∪ L3 ⊂ S3 = ∂B4 bounding properly immersed disks A = D1 ∪ D2 ∪ D3 £ B4 which support
W = D1 ∪D2 ∪D3 ∪W(1,2) with t(W) = 1

2>−− 3.
The disk D1 consists of the “horizontal” opaque disk in the lower part of the middle picture

extended by an annular collar back to L1 in the left picture. The disks D2 and D3 consist of
the embedded annuli which are the products of L2 and L3 with the radial coordinate into B4

together with embedded disks (not shown) extending further into B4 that are bounded by the
unlink in the right picture. The framed embedded Whitney disk W(1,2) which pairs D1 ∩D2 is
completely contained in the middle picture and has a single interior intersection point p with
D3 such that tp = 〈(1,2),3〉 = 1

2>−− 3 = t(W).

1.14.2.

Moving radially into B4 from left to right, Figure 1.15 shows the Figure-8 knot in S3 bounding a
properly immersed disk A = D1 £ B4 supporting W = D1 ∪W(1,1) with t(W) = (1,1) = 1

1>−− .
The track of the indicated null-homotopy of the Figure-8 knot describes the properly im-

mersed disk D1 with two self-intersections that are paired by the clean +1-twisted Whitney
disk W(1,1). Part of W(1,1) is visible in the middle picture, and the unlink in the right hand
picture can be capped off by two embedded disks which form the rest of D1 and W(1,1). The
twisting ω(W(1,1)) = 1 of W(1,1) is explained by Figure 1.16.

W(1,1)

Figure 1.15
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W(1,1)

Figure 1.16. The two right-most pictures from Figure 1.15, but here with a
Whitney section ∂W(1,1) shown in blue. Compare Figure 1.6. The +1-linking
between the purple and blue circles corresponds to the twisting ω(W(1,1)) = 1.

1.14.3.

If W is a Whitney tower on A such that t(W) = ∅, then A is regularly homotopic to an embed-
ding (Exercise 1.22.10).

1.15. Higher-order Whitney disks and intersections

We will be using the following grading of our trees:

Definition 1.5.

The order of a tree, rooted or unrooted, is defined to be the number of trivalent vertices.

Having associated trees to Whitney disks and intersection points in section 1.10, we can
define higher-order Whitney disks and higher-order intersections in Whitney towers:

Definition 1.6.

The order of a Whitney disk or intersection point in a Whitney tower is defined to be the order
of its corresponding tree.

The components A of the underlying surface are also referred to as order 0 surfaces.
Linking numbers of links in S3 can be computed by summing order 0 intersections between

order 0 surfaces in B4 bounded by the links. The higher-order intersections and Whitney disk
twistings in a Whitney tower bounded by a link are closely related to “higher-order” linking
numbers (Milnor’s link invariants), as will be explained in Section 2.

1.16. Order n framed Whitney towers

Definition 1.7. W is an order n framed Whitney tower if

(i) every framed tree tp in t(W) is of order ≥ n, and

(ii) there are no -trees in t(W).

So in an order n framed W all unpaired intersections have order ≥ n, and all Whitney disks
are framed.
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1.17. Order n twisted Whitney towers

Definition 1.8. W is an order n twisted Whitney tower if

(i) every framed tree tp in t(W) is of order ≥ n, and

(ii) every -tree in t(W) is of order ≥ n
2 .

So in an order n twisted W all unpaired intersections have order ≥ n, and all Whitney disks
of order less than n/2 are framed.

The reason that Definition 1.8 allows twisted Whitney disks in orders at least n/2 will be-
come clear in Section 2, where it will be shown (following [8]) that intersection invariants
extracted from the intersection forests of order n twisted Whitney towers, and the corre-
sponding order-raising obstruction theory, lead to a classification of order n twisted Whitney
towers on properly immersed disks in the 4-ball in terms of Milnor invariants and higher-order
Arf invariants of the links on the boundary. In [8] an analogous classification of order n framed
Whitney towers is also derived from this twisted classification.

1.18. Other gradings of Whitney towers

We mention here just two of the other variations on organizing Whitney towers. See also [8,
Sec.1.5] for a brief comparison discussion.

1.18.1. Non-repeating order n Whitney towers:

If tp is the tree associated to an intersection p in a Whitney tower such that tp has distinct
univalent labels, then tp is called a non-repeating tree and p is called a non-repeating inter-
section.

Definition 1.9. A Whitney tower W is an order n non-repeating Whitney tower if all non-
repeating tp ∈ t(W) are of order ≥ n.

Note that there are no restrictions on -trees in order n non-repeating Whitney towers, and
no restrictions on any repeating trees which do not have distinctly labeled univalent vertices.

Non-repeating Whitney towers characterize being able to “pull apart” components:

Theorem 1.10 ([31]). A = ∪m=1A £ X supports an order m − 1 non-repeating W if and only
if A is homotopic rel ∂A to A′ = ∪m=1A

′
 with A′ ∩ A

′
j = ∅ for all  6= j.

The obstructions to the existence of order n non-repeating Whitney towers are analogous
to Milnor’s non-repeating link homotopy invariants [22], and for immersed disks in the 4-ball
are equivalent to the first non-vanishing non-repeating Milnor invariants [31, Thm.8].

In Section 3 we will examine the obstructions to non-repeating Whitney towers on 2-
spheres in 4-manifolds in detail for low orders.

1.18.2. Symmetric Whitney towers:

Definition 1.11. A Whitney tower W is symmetric if all Whitney disks in W are framed and
only have interior intersections with Whitney disks of the same order.

The natural grading of symmetric Whitney towers is by height:

Definition 1.12. A symmetric Whitney tower W has height n if W has order (2n − 2) as a
framed Whitney tower.

The Whitney disks in a symmetric Whitney tower correspond to symmetric rooted trees Yn

defined in Figure 1.17.
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Y

( n - 1 )

Y

( n - 1 ) Y (n-1)Y (n-1)

Figure 1.17. The symmetric rooted trees Y1, Y2, Y3 and Yn = 〈Y(n−1), Y(n−1)〉
of height 1, 2, 3, and n.

So an equivalent definition of a symmetric Whitney tower of height n is that t(W) only
contains trees which are inner products 〈Yn, Yn〉 of height n symmetric rooted trees.

We also have the following variation extending this definition to half-integers: If t(W) only
contains trees which are inner products 〈Yn, Yn−1〉, then W is said to be of height n.5.

Theorem 1.13 ([6]). If a link L ⊂ S3 bounds immersed disks into B4 supporting W of height
n + 2, then L is n-solvable in the sense of Cochran–Orr–Teichner.

A knot bounds a height 2 Whitney tower if and only if it has vanishing Arf invariant; a knot
bounds a height 2.5 Whitney tower if only if it is algebraically slice; and in general signature
invariants are known to provide upper bounds on the possible heights of Whitney towers
bounded by knots [6]. There is an extensive literature related to the n-solvable filtration of
classical concordance.

A complete height-raising obstruction theory for symmetric Whitney towers is not known.
Necessary conditions for raising height can be formulated in terms of the vanishing of sig-
natures, but algebraic invariants whose vanishing suffices for raising height have not been
formulated in general. The order-raising construction given in section 4.6 destroys any Whit-
ney disk symmetry. First open case: Given a knot in S3 bounding W ⊂ B4 of height 2.5, there
are no known obstructions to the knot bounding a Whitney tower of height 3 in B4.

1.19. Tree Orientations

Recall that our Whitney towers are oriented, with the underlying surface A coming with a
given orientation, and with fixed orientations chosen for the Whitney disks in W. With an
eye towards later defining invariants in terms of t(W) which will be independent of Whitney
disk orientations, we introduce here two conventions from the Whitney tower literature which
relate Whitney disk and tree orientations. Via either of these two conventions, the choices of
Whitney disk orientations will be seen in section 4.7 to correspond to antisymmetry relations
among the trees, and will be quotiented out in the target of the invariants.

As per section 1.10, the rooted tree associated to a Whitney disk W in W can be mapped
into W, with the trivalent vertex adjacent to the root contained in the interior of W, and
each other trivalent vertex contained in the interior of a lower-order Whitney disk support-
ing W. The two descending edges from each trivalent vertex determine a “corner” of the
corresponding Whitney disk that does not contain the third ascending edge. For instance, in
Figure 1.13 the corner determined by the descending edges from the indicated trivalent ver-
tex contains the negative intersection point paired by the corresponding Whitney disk. And
in the right side of Figure 1.9 the corners of the Whitney disks determined by the descending
edges of the two trivalent vertices of the tree each contain the negative intersection paired
by the Whitney disk.

With this terminology we define the following conventions for aligning the vertex orienta-
tions on trees with the chosen orientations on Whitney disks:

The negative corner convention: The trees associated to all Whitney disks in W are
mapped into W with the requirement that the corner of each Whitney disk determined by
the two descending edges of each trivalent vertex contains the negative intersection point
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between the sheets paired by the corresponding Whitney disk. Then the vertex orientations
of each tree are taken to be induced from the Whitney disk orientations.

The positive corner convention: The trees associated to all Whitney disks in W are
mapped into W with the requirement that the corner of each Whitney disk determined by
the two descending edges of each trivalent vertex contains the positive intersection point
between the sheets paired by the corresponding Whitney disk. Then the vertex orientations
of each tree are taken to be induced from the Whitney disk orientations.

I

J

K K

J

I

I

JK

I

JK

Figure 1.18. Top: A W(,J)-Whitney move on the -sheet in a split Whitney tower
creates a pair of intersections which can be paired by a ‘meridional’ Whitney
disk W(K,) that intersects the J-sheet in a single point. Bottom: Indicating the
unpaired intersection by a small circle linking its corresponding edge, the top
construction realizes 〈(, J), K〉 = 〈(K, ), J〉.

1.20. ‘Moving’ unpaired intersections in their trees

Again with an eye towards extracting invariants from t(W), examination of our notation re-
veals that the tree tp := 〈(, J), K〉 associated to p ∈ W(,J) ô WK does not keep track of which
edge of tp contains the unpaired intersection p, since for instance 〈(, J), K〉 = 〈, (J, K)〉 =
〈(K, ), J〉. It seems reasonable ask “Why not also keep track of the edge in tp corresponding
to p?”, but it turns out that robust information is carried by the shape of the tree rather than
the intersection point itself. This is illustrated in Figure 1.18, which shows the geometric re-
alization of 〈(, J), K〉 = 〈(K, ), J〉 by a controlled local construction that does not create any
new trees. This construction preserves the signed tree of the unpaired intersection point,
using either convention in section 1.19 (Exercise 1.22.11). By iterating this construction an
un-paired intersection can be “moved to any edge of its tree”.

1.21. Geometric Jacobi Identity in four dimensions

We close this section by showing the neccessity of certain relations in the target of any
homotopy invariant of A represented by t(W) for W supported by A. The proof of the following
theorem provides a nice illustration of the material covered so far:

Theorem 1.14 ([7]). There exist four 2-spheres A1 ∪ A2 ∪ A3 ∪ A4 £ S4 in the 4-sphere
supporting W with intersection forest t(W) equal to the three signed trees in Figure 1.19.
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1 1 1222

3 3 3 444

Figure 1.19

This is a “Jacobi Identity” in the sense that taking the 4-labeled univalent vertices as roots
and identifying the resulting rooted trees with Lie brackets yields the three terms [[1,2],3]−
[1, [2,3]] + [[3,1],2], and this sum of trees must vanish in the target of any homotopy
invariant represented by t(W) since W is supported by homotopically trivial 2-spheres.

Proof of Theorem 1.14. Start with disjoint embeddings A : S2 → B4 ⊂ S4,  = 1,2,3,4.
Then do a single finger move on each of A1, A2, A3 into A4, yielding the left picture of

Figure 1.20, in which A4 appears as the horizontal plane of each picture. The Whitney disks
W(3,4), W(4,1) and W(2,4) in the center picture of Figure 1.20 are inverse to the finger moves
(Exercise 1.22.6).

W

A4

A3 A2

A1

A4

A3

A1

A2
(3,4) W

(2,4)

W
(4,1 )

Figure 1.20

We will describe modifications of the order 1 Whitney disks in the center of Figure 1.20 that
yield new disjointly embedded framed order 1 Whitney disks which will have the boundaries
shown in the right picture of Figure 1.20. These modifications will create pairs of order 1 in-
tersections that admit disjointly embedded framed order 2 Whitney disks which each have a
single order 2 intersection corresponding to a term of the Jacobi identity. The entire construc-
tion will be supported in the 4-ball described by Figure 1.20 as the present, and extending
into past and future where the arcs of A1, A2 and A3 extend as products.

First we will construct the left-most term of the Jacobi identity in Figure 1.19, suppressing
orientations for the moment. Start by changing a collar of W(3,4) as indicated in the left of
Figure 1.21. Still referring to this new Whitney disk as W(3,4), we have created a new pair of
order 1 intersections {q, r} = A2 ô W(3,4), as shown in the figure. Since the collar of W(3,4)
containing q and r is parallel to A4, it follows that q and r have opposite signs, since the
intersections A2 ô A4 created by the finger move of A2 into A4 have opposite signs. Next
add an order 2 Whitney disk W(2,(3,4)) pairing q and r as on the right of Figure 1.21, where
∂W(2,(3,4)) is shown as green. Part of W(2,(3,4)) is formed from the original order 1 Whitney
disk W(2,4) with a collar of the arc of ∂W(2,4) on A4 removed, and the rest of W(2,(3,4)) is
parallel to A4. This creates a single order 2 intersection p = A1 ∩W(2,(3,4)), as shown in the
figure. This new order 1 W(3,4) and the order 2 W(2,(3,4)) are each embedded, and completely
contained in the present.

In the left of Figure 1.22 the tree tp = 3
4>−<

2
1 associated to p = A1∩W(2,(3,4)) is included (but

suppressed from view are the continuations of the edges changing sheets into the order 0
2-spheres). If W(3,4) and W(2,(3,4)) are oriented to agree with the orientation of A4 where they
are parallel to A4, then this embedding of tp conforms to the positive corner convention of
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Figure 1.21

section 1.19, and the sign εp of p is positive. So εp · tp is the left-most term in the Jacobi
relator of Figure 1.19.

W
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( 2 , ( 3 , 4 ) )
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+

+

-

-

Figure 1.22

It remains to construct the other two terms in Figure 1.19. The right side of Figure 1.22
shows the just constructed W(3,4) and W(2,(3,4)), and the red and blue boundaries of the new
order 1 Whitney disks that we want to create. Observe that the parts of the red and blue
boundaries that lie on A4 extend to small embedded collars in the present that are disjoint
from W(3,4) and W(2,(3,4)) as well as the four 2-spheres. So by extending the inner collar
boundary of red into the past, and the inner collar boundary of blue into future, the same
construction that was just done in the present can be carried out in nearby past and future
B3-slices to yield the other two desired trees. See Exercise 1.22.16.

Note that the construction necessarily extends into both past and future because it yields
new disjointly embedded order 1 Whitney disks with boundaries as in the right of Figure 1.20,
and this configuration forms the Borromean Rings which is not a slice link. �

Corollary 1.15. For any Whitney tower W on a properly immersed surface A in a 4–manifold,
the local ‘IHX relation’ of finite type theory (Figure 1.23) is needed in the target of any
invariant of A represented by t(W).

In this more general local relation the univalent vertices of the three trees represent ar-
bitrary (fixed) subtrees. To see that this corollary follows from Theorem 1.14, observe that
clean Whitney disks W , WJ, WK and WL corresponding to any given rooted trees , J, K and
L can be created by finger moves (Exercise 1.22.12). Then, after a connected sum with S4
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I I IJ J J

K K KL L L

=   0

Figure 1.23. The IHX relation.

along a 4–ball in the complement of W, tubing the 2-spheres from the theorem into the inte-
riors of these Whitney disks creates exactly the IHX relator in the corollary, since the tubes
are supported near arcs which can be taken to be disjoint from the 2-complex W.

1.22. Section 1 Exercises

1.22.1. Exercise:

Visualize the 2-component unlink in S3 bounding the disjoint disks in B4 shown in Figure 1.24.

Figure 1.24. Disjoint disks in B4 = B3 × 

1.22.2. Exercise:

Visualize the Hopf link = ∂A ∪ ∂B ⊂ S3 = ∂(B3 × ) in each of Figure 1.1 and Figure 1.2.

1.22.3. Exercise:

Starting with the bottom row of Figure 1.3, draw the finger move that pushes the horizontal
blue sheet down into the black sheet. Observe that the results of the two finger moves are
isotopic.

1.22.4. Exercise:

Check that the two intersections created by a finger move have opposite signs.

1.22.5. Exercise:

Check that Figure 1.25 shows the result of a model Whitney move which adds the Whitney
bubble to the black sheet instead of the blue sheet in Figure 1.7. (The two copies of the
Whitney disk in the Whitney bubble are in grey). Convince yourself that a model Whitney
move is symmetric up to isotopy by finding an isotopy between Figure 1.25 and the right
side of Figure 1.7.
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Figure 1.25

1.22.6. Exercise:

The oppositely-signed pair of intersections created by a finger move (Figure 1.4) are con-
tained in a local 4-ball and admit a model Whitney disk (Figure 1.5). Check that the result of
doing a Whitney move on such a Whitney disk (Figure 1.7) is isotopic to not doing the finger
move in the first place. We sometimes say that such a Whitney disk is “inverse” to the finger
move.

1.22.7. Exercise:

Describe the new intersections created by a W-Whitney move in terms of the interior inter-
sections W has with surfaces, the self-intersections of W, and the twisting ω(W).

1.22.8. Exercise:

Visualize the Borromean Rings ∂A∪∂B∪∂C ⊂ S3 = ∂(B3× ) in (both sides of) Figure 1.8. HINT:
See the Bing-double of one component of Exercise 1.22.2.

1.22.9. Exercise:

Visualize the Bing-double of the Hopf link as the boundaries of the red, blue, green and yellow
sheets in S3 = ∂(B3 × ) in the left side of Figure 1.9.

1.22.10. Exercise:

Show that if W is a Whitney tower on A such that t(W) = ∅, then A is regularly homotopic to
an embedding.

1.22.11. Exercise:

Check that the construction of Figure 1.18 preserves the sign of the unpaired intersection
point using either the positive or negative convention in section 1.19. You may assume that
the embedded trees in the figure satisfy the orientation convention, and check that this
implies that the sign of the unpaired intersections are the same on the left and right.

1.22.12. Exercise:

Let W be a Whitney tower on a surface A, and let  be any rooted tree. Show that, without
changing t(W), a clean framed Whitney disk W with associated tree  can be created by per-
forming finger moves. (HINT: A finger move is supported near an arc, hence can be arranged
to miss any other surface.)
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1.22.13. Exercise:

Figure 1.26 shows how an intersection between a green sheet and the interior of a Whitney
disk W can be eliminated by a finger move, at the cost of creating an oppositely-signed
pair of intersections between the green sheet and one of the sheets paired by W. This is
called “pushing down” an intersection in W. Use pushing down to show that if A supports
an order 1 framed Whitney tower W, then A supports an order 1 framed Whitney tower W ′

whose Whitney disks are disjointly embedded.

W W

Figure 1.26. ‘Pushing down’ an intersection.

1.22.14. Exercise:

The green-blue intersections created by the finger move in Figure 1.26 admit a local Whitney
disk V which is inverse to the finger move (Exercise 1.22.6), such that ∂V intersects ∂W
transversely in the blue sheet. Draw V into the right side of Figure 1.26 (hanging down
“underneath” the blue sheet). Observe that V and W can be made disjoint by extending
to a collar of V an isotopy of ∂V in the blue sheet that pushes ∂V ô ∂W away across either
blue-black intersection paired by W. This isotopy of V creates an interior intersection between
(the new) V and the black sheet. Draw this new V, including its interior intersection with the
black sheet, and check that this intersection between V and black has the same order as the
original intersection between W and the green sheet.

1.22.15. Exercise:

Check that the trees tp ⊂ W of section 1.10 can always be arranged to be disjointly embed-
ded in W, for any number of unpaired intersections in W. (Do not assume that W is split
(Figure 1.10), and don’t forget the possibility of self-intersections in a Whitney disk.)

1.22.16. Exercise:

Complete the proof of Theorem 1.14 by constructing the other two trees of Figure 1.19 anal-
ogously using past and future (see [7] for the solution), and check that all the Whitney disks
are framed.

2. Order n twisted Whitney towers in the 4-ball

Recall from Definition 1.8 that a Whitney tower W is twisted of order n if every unpaired
intersection p in W is of order ≥ n and every twisted Whitney disk WJ in W is of order ≥ n

2 ; or
equivalently, if every framed tree tp in the intersection forest t(W) is of order ≥ n and every
twisted tree J in t(W) is of order ≥ n

2 .
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We say that a link L ⊂ S3 = ∂B4 bounds an order n twisted Whitney tower W if W ⊂ B4 is
an order n twisted Whitney tower whose order zero surfaces are immersed disks bounded by
the components of L.

Following [8, 11], using algebraic results from [9], this section describes a classification of
links in S3 bounding order n twisted Whitney towers:

Section 2.1 defines abelian groups Tn generated by trees, with relations corresponding
to controlled modifications of twisted Whitney towers. These groups are the targets for in-
tersection invariants τn (W) := [t(W)] ∈ Tn defined in section 2.3 which have the property
that L bounds an order n twisted W with τn (W) = 0 if and only if L bounds an order n + 1
twisted Whitney tower. The identification of these order-raising obstruction-theoretic invari-
ants with Milnor invariants and higher-order Arf invariants of the link on the boundary leads
to a classification of order n twisted Whitney towers in B4 (Corollary 2.18).

The higher-order Arf invariants appear for each n ≡ 2 mod 4, and take values in specific
finite Z/2Z-vector spaces (Definition 2.17). In this setting the main open problem is to de-
termine precisely the image of these higher-order Arf invariants, which the Higher-order Arf
invariant Conjecture states is maximal (Conjecture 2.19).

For links bounding order n framed Whitney towers (Definition 1.7) there is an analogous
classification that is more complicated to describe because, in addition to Milnor invariants
and higher-order Arf invariants, it also involves higher-order Sato–Levine invariants which
represent obstructions to framing odd order twisted Whitney towers and correspond to cer-
tain projections of Milnor invariants. In [8] the framed classification is derived from the
twisted one described here.

We also remark that Jae Choon Cha has shown that the higher-order Arf invariants measure
the potential difference between the existence of twisted W in B4 versus rational homology
B4s. Namely, L ⊂ S3 has vanishing Milnor invariants through order n if and only if L bounds
an order n + 1 twisted W in a rational homology B4 (see [3, Thm.C]).

Throughout this section the fixed index set {1,2, , . . . ,m} is usually suppressed from no-
tation.

2.1. The order n twisted tree groups

Recall our terminology and conventions for trees (sections 1.9–1.13, and 1.15), including that
order is the number of trivalent vertices.

First we define framed tree groups:

Definition 2.1. Denote by Tn the free abelian group on order n framed trees modulo the
local antisymmetry (AS) and Jacobi identity (IHX) relations in Figure 2.1.

Figure 2.1. The AS (left) and IHX (right) local relations. Here univalent vertices
represent arbitrary fixed subtrees.

The target twisted tree groups Tn for the intersection invariants τn (W) for order n twisted
Whitney towers W ⊂ B4 bounded by L ⊂ S3 will be defined separately for odd and even n.
After giving the definitions in terms of generating trees and relations, the geometric meaning
of the relations will be discussed.

Definition 2.2. For each j ≥ 1, the order 2j − 1 twisted tree group T2j−1 is the quotient of
T2j−1 by boundary-twist relations:

 −−< J
J = 0
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where J ranges over all order j − 1 subtrees.

Definition 2.3. For each j ≥ 0, the order 2j twisted tree group T2j is the quotient of the free
abelian group on framed trees of order 2j and -trees of order j by the following relations:

(i) AS and IHX relations on order 2j framed trees

(ii) symmetry relations: (−J) = J

(iii) twisted IHX relations:  = H + X − 〈H,X〉

(iv) interior-twist relations: 2 · J = 〈 J, J〉

In item (iii) the three twisted trees differ locally as in the right of Figure 2.1.
See [10, Sec.4.8] for an interpretation of J 7→ J as a quadratic refinement of the Tn-valued

intersection form on rooted trees (or on Whitney disks).

2.2. Geometric meaning of the relations

Both the odd and even order twisted tree groups contain the AS and IHX relations which apply
to framed tree generators. We have already seen in Corollary 1.15 the necessity of including
the IHX relations in defining an invariant from t(W) since IHX trees can be created locally.
Upon fixing the positive or negative corner convention (section 1.19), the signs εp = ± of the
framed trees εp · tp in t(W) only depend on the orientation of the underlying order 0 surface
modulo the antisymmetry relations (section 4.7).

In the odd order groups T2j−1, which contain the obstructions to the existence of an order
2j twisted Whitney tower, the boundary-twist relations correspond geometrically to the fact
that performing a boundary twist (Figure 2.2) on an order j Whitney disk W(,J) creates an

order 2j − 1 intersection point p ∈ W(,J) ∩WJ with associated tree tp =  −−< J
J and changes

ω(W(,J)) by ±1. By Exercise 1.22.12, any number of clean framed W(,J) can be created in any

Whitney tower, so any number of tp =  −−< J
J can be created by this construction. It follows

from the obstruction theory (section 4.6) that after arranging such trees into “algebraically
canceling” pairs, the corresponding unpaired intersections can be exchanged for “geometri-
cally canceling” intersections admitting Whitney disks. Since this can be done at the cost of
only creating order j twisted Whitney disks, which are allowed in an order 2j Whitney tower,
the trees  −−< J

J do not represent obstructions.
In the even order target groups T2j : The symmetry relation corresponds to the fact that

the twisting ω(W) (section 1.5) is independent of the orientation of the Whitney disk W, with
the minus sign denoting that the cyclic orderings at the trivalent vertices of −J differ from
those of J at an odd number of vertices. The twisted IHX relation corresponds to the effect
of performing a Whitney move in the presence of a twisted Whitney disk, as described in
Lemma 4.5 and [8, Lem.4.1]. The interior-twist relation corresponds to the fact that creating
a ±1 self-intersection in a WJ by a local cusp-homotopy [13, Sec.1.6] changes the twisting by
∓2 (Figure 2.3). The result of such a cusp-homotopy is the same as the local cut-and-paste
operation described in [13, Sec.1.3]. For any J, a clean WJ can be created by finger moves
(Exercise 1.22.12), then a ±-interior twist WJ will change t(W) by:

±〈 J, J〉 ∓ 2 · J

Thus, all the relations in Tn can be realized by controlled modifications of Whitney towers
altering their intersection forests, without changing the homotopy class of the underlying
order 0 surface.
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boundary
twist of W

with blue
parallel of W
that intersects W    

W

p

(i,J)

W
(i,J)

(i,J)

(i,J)

J

Figure 2.2. Top two rows: ‘Side view’ near a point in ∂W(,J) ⊂ WJ of the
boundary-twist operation on W(,J) into WJ which creates a transverse inter-
section p ∈W(,J)∩WJ. Bottom row: This operation changes ω(W(,J)) by ±1, as
represented by the intersection in the middle frame between the boundary-
twisted W(,J) and its blue parallel copy.

+ 1

- 1

- 1

+ 1

- 1

- 1

p

and
with
blue
parallel
of W

WJ

J

Figure 2.3. After a ±-interior twist on WJ, shown near an arc in WJ that
runs between the two sheets paired by WJ. Top row: A new transverse self-
intersection p ∈ WJ ô WJ has been created. Bottom row: ω(WJ) has been
changed by ∓2, as represented by the pair of blue-black intersections be-
tween this new WJ and a parallel copy which are visible in the third-from-right
frame. Note that the pair of blue-black intersections in the fourth-from-left
frame are just an artifact of the immersion of the normal bundle of WJ and do
not contribute to the twisting ω(WJ).

2.3. Intersection/obstruction theory for order n twisted Whitney towers

Definition 2.4 (Def.2.9 of [8]). For an order n twisted Whitney tower W, let tn(W) denote
the sub-multiset tn(W) ⊂ t(W) consisting of all order n framed trees and order n/2 twisted
trees in t(W). Define the order n twisted intersection invariant:

τn (W) := [tn(W)] ∈ Tn
If W is an order n twisted Whitney tower, then the intersection forest t(W) may apriori

contain framed trees of order > n and -trees of order > n/2, but in fact any such Whitney
disks in W can be deleted and/or modified yielding tn(W) = t(W) (see Exercise 2.13.1).
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Theorem 2.5 (Thm.1.9 of [8]). A link L ⊂ S3 bounds an order n twisted W ⊂ B4 with τn (W) =
0 ∈ Tn if and only if L bounds an order n + 1 twisted Whitney tower.

Idea of proof: For the “only if” direction, first realize relations by geometric constructions,
as discussed in section 2.2, to arrange that all trees in tn(W) occur in oppositely-signed
isomorphic pairs. Then use controlled maneuvers to arrange that all order n intersections
admit Whitney disks and all Whitney disks of order ≤ n/2 are framed. See section 4.6 for an
outline of this proof, and [8, Sec.4] for details. For the “if” direction see Exercise 2.13.2.

2.4. Quick review of first non-vanishing Milnor invariants.

Let L ⊂ S3 be an m-component link with fundamental group G = π1(S3 \ L). By [23, Thm.4],
if the longitudes of L lie in the (n + 1)-th term Gn+1 of the lower central series of G, then a
choice of meridians induces an isomorphism Gn+1

Gn+2
∼= Fn+1

Fn+2
, where F = F(m) is the free group

on {1, 2, . . . , m}, with  corresponding to the th meridian.
Let L = L(m) denote the free Lie algebra (over Z) on generators {X1, X2, . . . , Xm}. It is

N-graded, L = ⊕nLn, where the degree n part Ln is the additive abelian group of length n
brackets, modulo Jacobi identities and self-annihilation relations [X,X] = 0. The multiplicative
abelian group Fn+1

Fn+2
of length n + 1 commutators is isomorphic to Ln+1, with  mapping to X

and commutators mapping to Lie brackets.
In this setting, denote by  the image in Ln+1 of any -th longitude of L under the above

isomorphisms ( is well-defined since choices of longitudes differ only by conjugation), and
define the order n Milnor invariant μn(L) by

μn(L) :=
m
∑

=1

X ⊗  ∈ L1 ⊗ Ln+1

This definition of μn(L) is the first non-vanishing “total” Milnor invariant of order n, and cor-
responds to all Milnor invariants of length n + 2 in the original formulation of [22, 23]. The
original μ̄-invariants are computed from the longitudes via the Magnus expansion as inte-
gers modulo indeterminacies coming from invariants of shorter length. Since we will only be
concerned with first non-vanishing μ-invariants, we do not use the “bar” notation μ̄.

It turns out that μn(L) lies in the kernel Dn of the bracket map L1 ⊗ Ln+1 → Ln+2 (e.g. by
“cyclic symmetry” [14]).

2.5. The summation maps ηn

The connection between τn (W) and μn(L) is via a homomorphism ηn : Tn → Dn which is most
easily described by regarding rooted trees of order n as elements of Ln+1 in the usual way:
For  a univalent vertex of an order n framed tree t, denote by B(t) ∈ Ln+1 the Lie bracket
of generators X1, X2, . . . , Xm determined by the formal bracketing of indices which is gotten
by considering  to be a root of t.

Definition 2.6. Denoting the label of a univalent vertex  by ℓ() ∈ {1,2, . . . ,m}, the map
ηn : Tn → L1 ⊗ Ln+1 is defined on generators by

ηn(t) :=
∑

∈t
Xℓ() ⊗ B(t) and ηn( J ) :=

1

2
ηn(〈 J, J〉)

The first sum is over all univalent vertices  of t, and the second expression lies in L1 ⊗ Ln+1
because the coefficients of ηn(〈 J, J〉) are even. Here J is a rooted tree of order j for n = 2j.
(Recall that J is obtained from J by labeling the root vertex of J with the symbol.)

Examples of ηn for n = 1,2:

η1
�

1−−< 3
2

�

= X1 ⊗ −−< 3
2 + X2 ⊗ 1−−< 3 + X3 ⊗ 1−−< 2

= X1 ⊗ [X2, X3] + X2 ⊗ [X3, X1] + X3 ⊗ [X1, X2].
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And,
η2
�

−−< 2
1

�

= 1
2 η2

�

1
2 >−−<

2
1

�

= X1 ⊗ 2>−−< 2
1 + X2 ⊗

1>−−< 2
1

= X1 ⊗ [X2, [X1, X2]] + X2 ⊗ [[X1, X2], X1].
The image of ηn is equal to the bracket kernel Dn < L1 ⊗ Ln+1, by [11, Lem.32].

Theorem 2.7 ([8]). If L bounds a twisted Whitney tower W of order n, then the order q
Milnor invariants μq(L) vanish for q < n, and

μn(L) = ηn ◦ τn (W) ∈ Dn

Idea of proof: The existence of the order n twisted W implies, via Dwyer’s Theorem, that
the inclusion S3 \ L→ B4 \W induces an isomorphism on the (n+ 1)th lower central quotients
of π1, so the longitudes of L can be computed in B4 \W. It turns out that the corresponding
iterated commutators are displayed exactly according to ηn◦τn (W), with the key observation
being that a meridian to a Whitney disk is a commutator of meridians to the sheets paired
by the Whitney disk. See [11, Sec.4] or [3, Thm.3.1].

2.6. The order n twisted Whitney tower filtration on links

Recall that a link L ⊂ S3 = ∂B4 bounds an order n twisted Whitney tower W if W ⊂ B4 is an
order n twisted Whitney tower whose order 0 surfaces are immersed disks bounded by the
components of L.

We say that links L0 and L1 in S3 are twisted Whitney tower concordant of order n if
L0 ⊂ S3× {0} and L1 ⊂ S3× {1} cobound a collection A £ S3× [0,1] of immersed annuli such
that A supports an order n twisted Whitney tower (with A inducing the reversed orientation
on L1).

Denote by Wn the set of links in S3 bounding order n twisted Whitney towers in B4 modulo
the equivalence relation of order n + 1 twisted Whitney tower concordance.

The twisted “order-raising” Theorem 2.5 implies the following essential criterion for links
to represent equal elements in Wn :

Corollary 2.8 ([8, Cor.3.3]). Links L0 and L1 represent the same element of Wn if and only if
there exist order n twisted Whitney towers W in B4 with ∂W = L and τn (W0) = τn (W1) ∈ Tn .

Proof. If L0 and L1 are equal in Wn then they cobound A supporting an order n + 1 twisted
Whitney tower V in S3 × , and any order n twisted Whitney tower W1 in B4 bounded by L1
can be extended by V to form an order n twisted Whitney tower W0 in B4 bounded by L0,
with τn (W0) = τn (W1) ∈ Tn since τn (V) vanishes.

Conversely, suppose that L0 and L1 bound order n twisted Whitney towers W0 and W1 in 4–
balls B40 and B41, with τn (W0) = τn (W1). Then constructing S3×  as the connected sum B40#B

4
1

(along balls in the complements of W0 and W1), and tubing together the corresponding order
zero disks of W0 and W1, and taking the union of the Whitney disks in W0 and W1, yields
a collection A of properly immersed annuli connecting L0 and L1 and supporting an order n
twisted Whitney tower V. Since the orientation of the ambient 4–manifold has been reversed
for one of the original Whitney towers, say W1, which results in a global sign change for
τn (W1), it follows that V has vanishing order n intersection invariant:

τn (V) = τn (W0) − τn (W1) = τn (W0) − τn (W0) = 0 ∈ Tn
So by Theorem 2.5, A is homotopic (rel ∂) to A′ supporting an order n + 1 twisted Whitney
tower, and hence L0 and L1 are equal in Wn . �

The band sum L#βL′ ⊂ S3 of oriented m-component links L and L′ along bands β is de-
fined as follows: Form S3 as the connected sum of 3–spheres containing L and L′ along balls
in the link complements. Let β be a collection of disjointly embedded oriented bands joining
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like-indexed link components such that the band orientations are compatible with the link ori-
entations. Take the usual connected sum of each pair of components along the corresponding
band. Although it is well-known that the concordance class of L#βL′ depends in general on
β, it turns out that the image of L#βL′ in Wn does not depend on β:

Lemma 2.9 ([8]). For links L and L′ representing elements of Wn , any band sum L#βL′

represents an element of Wn which only depends on the equivalence classes of L and L′ in
Wn .

See Lemma 3.6 of [8] or Exercise 2.13.4 for a proof of Lemma 2.9 using the following:

Lemma 2.10 ([8]). If L and L′ bound order n twisted Whitney towers W and W ′ in B4, then
for any bands β there exists an order n twisted Whitney tower W# ⊂ B4 bounded by L#βL′,
such that t(W#) = t(W) + t(W ′).

See Lemma 3.7 of [8], or Exercise 2.13.3, for a proof.

2.7. Definition of the realization maps

We define “realization” maps Rn : Tn → Wn for all n as follows: Given any group element
g ∈ Tn , by Lemma 2.11 just below there exists an m-component link L ⊂ S3 bounding an
order n twisted Whitney tower W ⊂ B4 such that τn (W) = g ∈ Tn . Define Rn (g) to be the
class determined by L in Wn . This is well-defined (does not depend on the choice of such L)
by Corollary 2.8.

Lemma 2.11 ([8]). For any multiset
∑

p εp · tp +
∑

J ω(WJ) · J there exists a link L bounding
a Whitney tower W with intersection forest t(W) =

∑

p εp · tp +
∑

J ω(WJ) · J .

The proof of Lemma 2.11 follows Tim Cochran’s technique of “Bing-doubling along a tree”
to realize individual trees, and then uses band sums of links via Lemma 2.10 to realize sums
(multiset unions) of trees (see Lemma 3.8 of [8] or Exercise 2.13.5).

For instance, to compute the image of the framed tree t = 〈(1,2), (3,1)〉 = 1
2 >−−−< 1

3
under R2 , one Bing-doubles each component of the Hopf link and then bands together two
components as in Figure 2.4 to get a link L bounding a Whitney tower W with τ2 (W) = t. Any
framed tree can be realized analogously by applying iterated Bing-doubling to the Hopf link
to get the desired tree shape, and then banding components to get the desired univalent
labels.

21

1 3

R2 B4into 

W(1,2)

L
L

1

2

L3

D1
D2

D3

Figure 2.4

To compute the image of the twisted tree (2,1) = 2
1 >−−− under R2 , one applies a

twisted Bing-double to the unknot as in Figure 2.5 to get L bounding a Whitney tower W with
τ2 (W) = (2,1) . Any twisted tree J with twisting coefficient ω ∈ Z can be realized similarly
by starting with a single ω-twisted Bing-doubling of the unknot and then applying iterated
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(untwisted) Bing-doublings to get the desired tree shape, and then banding components to
get the desired univalent labels.

1

2

D1

D2L2

L
1

D2

R2

2 1

W

W

B4into

Figure 2.5

In combination with Theorem 2.7, the following result will play a key role in classifying
order n twisted Whitney towers in the 4–ball:

Theorem 2.12 ([8]). The realization maps are epimorphisms Rn : Tn �Wn .

Proof. From Lemma 2.9 the band sum of links gives a well-defined operation in Wn which is
clearly associative and commutative, with the m-component unlink representing an identity
element. The realization maps are homomorphisms by Lemma 2.10 and surjectivity is proven
as follows: Given any link L representing an element of Wn , choose a twisted Whitney tower
W of order n with boundary L and compute τ := τn (W). Then take L′ := Rn (τ), a link that’s in
the image of Rn and for which we know a Whitney tower W ′ with boundary L′ and τ (W ′) = τ.
By Corollary 2.8 it follows that L and L′ represent the same element in Wn . �

2.8. Computing the order n twisted Whitney tower filtration

From Theorem 2.7 and Theorem 2.12 we have the following commutative triangle diagram 5
of epimorphisms:

(5) Tn
Rn // //

ηn !! !!

Wn

μn
����

Dn

The following algebraic result is a consequence of the proof [9] of a combinatorial conjec-
ture of J. Levine:

Theorem 2.13 ([8]). The maps ηn : Tn → Dn are isomorphisms for n ≡ 0,1,3 mod 4.

From this theorem we immediately get:

Corollary 2.14. For n ≡ 0,1,3 mod 4, the Milnor invariants μn : Wn → Dn and the twisted
realization maps Rn : Tn →Wn are isomorphisms.

By [24], Dn is a free abelian group of known rank for all n, so we have a complete compu-
tation of Wn

∼= Dn
∼= Tn in three quarters of the cases.

Remark 2.15. It also follows that in these orders the order n twisted intersection invariant
τn (W) ∈ Tn only depends on the concordance class of L = ∂W. In particular, τn (W) ∈ Tn is
independent of the choice of Whitney tower W on the (unique) homotopy class rel ∂ of the
order 0 immersed disks bounded by L.

Towards understanding the remaining cases n ≡ 2 mod 4, we have another consequence
of [9] which was derived as Corollary 6.6 of [8]:
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Proposition 2.16 ([8]). For rooted trees J of order j − 1, the map 1 ⊗ J 7→ −−−< J
J ∈ T4j−2

induces an isomorphism:

Z2 ⊗ Lj ∼= Ker{η4j−2 : T4j−2 → D4j−2}

So Z2 ⊗ Lj is also an upper bound on K4j−2 := Ker{μ4j−2 : W4j−2 � D4j−2}. Denoting by
αj : Z2 ⊗ Lj � K4j−2 the epimorphism induced by R4j−2, we have the following extension of
the above triangle diagram 5 in these orders:

〈1 ⊗ J〉
dd

$$

Z2 ⊗ Lj
αj

// //

$$

$$

K4j−2
��

��

〈 −−−< J
J〉 // // T4j−2

R4j−2
// //

η4j−2
"" ""

W4j−2

μ4j−2
����

D4j−2

By inverting the induced isomorphism αj on (Z2 ⊗ Lj)/ Kerαj , we get the following defini-
tion:

Definition 2.17. The higher-order Arf invariants Arfj are defined by

Arfj := (αj )
−1 : K4j−2 → (Z2 ⊗ Lj)/ Kerαj

As a corollary we get the computation of Wn for all n, and a characterization of links
bounding order n twisted Whitney towers:

Corollary 2.18 ([8]). The abelian groups Wn are classified by Milnor invariants μn and, in
addition, higher-order Arf invariants Arfj for n = 4j − 2.

In particular, a link bounds an order n + 1 twisted W if and only if its Milnor invariants and
higher-order Arf invariants vanish up to order n.

2.9. The higher-order Arf invariant Conjecture

In the case j = 1 of Definition 2.17, Kerα1 is trivial and we have Arf1 : K2
∼=→ (Z2⊗L1) ∼= (Z2)m,

given by classical Arf invariants of the link components [11, Lem.10].
The higher-order Arf invariant conjecture states that Kerαj is trivial for all j:

Conjecture 2.19. Arfj : K4j−2 → Z2 ⊗ Lj are isomorphisms for all j.

Assuming this conjecture the classification in these orders would be described by the fol-
lowing diagram:

Z2 ⊗ Lj
##

##

K4j−2
oo

Arfj
oooo

��

��

T4j−2
R4j−2
// //

η4j−2
## ##

W4j−2

μ4j−2
����

D4j−2

Conjecture 2.19 would imply Wn

τn−→ Tn is an isomorphism for all n. That is, the inter-
section invariants τn taking values in Tn are independent of Whitney tower choices and
characterize links bounding order n twisted Whitney towers.
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W((1,2),(1,2))

W(1,2)L

L

1

2

Figure 2.6. The (untwisted) Bing double of the Figure-8 knot (L1 ∪ L2 ⊂ S3 on
left) bounds an order 6 twisted Whitney tower D1∪D2∪W(1,2)∪W((1,2),(1,2)) ⊂
B4, with ω(W((1,2),(1,2))) = 1. Here the order zero disks D bounded by the L
are contained near S3 in a collar (not shown) which corresponds to the left
arrow, and the intersection pair D1∩D2 which is paired by W(1,2) corresponds
to two “unclasping” crossing changes in a null-homotopy of L1∪L2 supported
in this collar. Thus, ∂W(1,2) is a parallel of the Figure-8 knot core of the band
used to create the Bing double.

2.10. Problems, Questions and re-formulations

As just mentioned in section 2.9, Conjecture 2.19 is true for k = 1, with Arf1 given by the
classical Arf invariants of the link components [11], but it remains an open problem whether
Arfk is non-trivial for any k > 1. The links R4k−2( −−<

J
J ) realizing the image of Arfk can all

be constructed as internal band sums of iterated Bing doubles of knots having non-trivial
classical Arf invariant ([11, Lem.13]), see Figure 2.6. Such links are known not to be slice by
work of J.C. Cha [2], providing evidence in support of Conjecture 2.19.

So the fundamental open problem in this setting is:

Open Problem 2.20. Determine the precise image of Arfj ≤ Z2 ⊗ Lj for j ≥ 2.

The following specific lowest order open question is already interesting:

Question 2.21. Does the Bing double of the Figure-8 knot R6 ( −−<
(1,2)
(1,2) ) ∈ W6 , shown in

Figure 2.6, bound an order 7 twisted Whitney tower?

This importance of this lowest order open question is magnified by the following fact [11,
Prop.14]:

Proposition 2.22 ([11]). If the Bing double of the Figure-8 knot does bound an order 7
twisted Whitney tower, then Arfj are trivial for all j ≥ 2.

Conjecture 2.19 predicts a negative answer to Question 2.21, which can be can be phrased
as the following restriction on the possible twisted Whitney towers on 2–spheres in the 4–ball:

Conjecture 2.23. There does not exist A : S2 ∪ S2 £ B4 supporting W with

t(W) = −−< (1,2)(1,2) (possibly + higher-order trees).

2.11. Higher-order Arf invariant Conjecture and Finite Type invariants

Habegger and Masbaum [16] have shown that Milnor invariants are the only rational finite
type concordance invariants of (string) links. The classical Arf invariant of a knot is known to
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be determined by the first non-trivial finite type isotopy invariant, and as stated above, Arf1
corresponds to the classical Arf invariants of the link components. So it is natural to ask:

Question 2.24. Are the Arfj for j > 1 also determined by finite type isotopy invariants?

For the first interesting case in this setting, a negative answer to Question 2.21 can be
formulated as:

Conjecture 2.25. The sum of trees in Figure 2.7 represents a non-trivial finite type concor-
dance invariant of 2-component string links (first-non-vanishing, Z/2Z-coefficients).

2 22

11

1 1

2

22 11 1

2

Figure 2.7

The invariant of Conjecture 2.25 would be finite type degree 6, and all finite type concor-
dance invariants of string links in degrees ≤ 5 have been characterized by J-B. Meilhan and
A. Yasuhara in [21]. So this conjecture appears to lie at the frontier of current understanding
in this setting.

Degree 6 finite type invariants are related to order 5 intersection invariants in the setting
of framed Whitney towers [7, 30], and the sum of trees in Figure 2.7 (modulo higher-order
trees) can be gotten by applying twisted IHX moves and boundary twists to a Whitney tower
W with t(W) = −−< (1,2)(1,2) bounded by any link R6 ( −−<

(1,2)
(1,2) ) ∈ W6 , see Exercise 2.13.12.

This illustrates how the higher-order Arf invariants shift down one order in the framed order
n Whitney tower filtration [8]. Conjecture 2.25 corresponds in this setting to:

Conjecture 2.26. The Bing double of any knot with non-trivial classical Arf invariant does
not bound an order 6 framed Whitney tower.

By Exercise 2.13.15, Conjecture 2.26 can also be phrased as a restriction on Whitney
towers supported by 2–spheres in 4–space:

Conjecture 2.27. There does not exist A : S2 ∪S2 £ B4 supporting W with t(W) equal to the
trees in Figure 2.7, possibly plus higher-order trees.

We remark that each of the two trees in Figure 2.7 individually represents a non-trivial
higher-order Sato–Levine invariant which is determined by a non-trivial order 6 μ-invariant
[8], so neither of these trees can appear by itself (plus higher-order trees) as t(W) for W on
2-spheres in B4 (compare Exercise 2.13.10).

Recent work of Danica Kosanović [19] includes progress towards showing that the em-
bedding calculus of Goodwillie–Weiss [15, 34] determines universal finite type invariants for
knots over the integers, as conjectured in [1]. Kosanović works with certain 2-complexes
called capped gropes which are very closely related to Whitney towers [8, 26], and one could
hope that, via a generalization of [19] to links, the homotopy-theoretic techniques of the
embedding calculus might be able to detect the higher-order Arf invariants:

Question 2.28. Can the Arfj be detected by the embedding calculus?

2.12. Higher-order Arf invariant conjecture and transfinite Milnor invari-
ants

In [4] Jae Choon Cha and Kent Orr defined certain transfinite invariants of 3–manifolds which
can be interpreted as providing a generalization of Milnor invariants. Their invariants include
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certain finite-length θk-invariants which can take values in finite abelian groups, and in [4,
Sec.14(9)] they ask:

Question 2.29. Are the higher-order Arf invariants related to the θk-invariants?

2.13. Section 2 Exercises

2.13.1. Exercise

If W is an order n twisted Whitney tower, then the intersection forest t(W) may contain
framed trees of order > n and -trees of order > n/2 in addition to those representing
τn (W) := [tn(W)] ∈ Tn . Show that by deleting Whitney disks of order > n, boundary-twisting,
and pushing-down intersections (Figure 1.26), these higher-order trees in t(W) can be elimi-
nated without changing τn (W) while preserving the twisted order n of the resulting Whitney
tower. (See discussion in [8, Sec.4.1,‘Notation and Conventions’].)

2.13.2. Exercise

If W is an order n + 1 twisted Whitney tower, observe that by definition W is also an order n
twisted Whitney tower, and check that τn (W) = 0 ∈ Tn .

2.13.3. Exercise

Show that if L and L′ bound order n twisted Whitney towers W and W ′ in B4, then for any
β there exists an order n twisted Whitney tower W# ⊂ B4 bounded by L#βL′, such that
t(W#) = t(W) + t(W ′). (Lemma 3.7 of [8].)

2.13.4. Exercise

Use the previous exercise to show that for links L and L′ representing elements of Wn , any
band sum L#βL′ represents an element of Wn which only depends on the equivalence classes
of L and L′ in Wn . (Lemma 3.6 of [8].)

2.13.5. Exercise

Given any framed tree 〈, J〉, construct a link L ⊂ S3 bounding W ⊂ B4 with t(W) = 〈, J〉. HINT:
Apply Bing-doubling as needed to the Hopf link, as in Figure 2.4. (See Lemma 3.8 of [8].)

2.13.6. Exercise

Given any integer n and any rooted tree J of positive order, construct a link L ⊂ S3 bounding
W ⊂ B4 with t(W) = n · J . HINT: Start with the n-twisted Bing double of the unknot (see
Figure 2.5 for the case n = 1), then apply untwisted iterated Bing-doubling as needed. (See
Lemma 3.8 of [8].)

2.13.7. Exercise

From Exercise 1.22.9, the Bing-double of the Hopf link bounds an order 2 twisted Whitney
tower W as in Figure 1.9. Show that the Bing-double of the Hopf link does not bound an order
3 twisted Whitney tower by checking that the order 2 Milnor invariant μ2 = η2◦τ2 (W) ∈ L1⊗L3
is non-zero. Conclude that the Bing-double of the Hopf link also does not bound an order 3
framed Whitney tower (since for any n an order n framed Whitney tower is also an order n
twisted Whitney tower by definition).
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2.13.8. Exercise

Compute the order 2 Milnor invariants μ2 = η2 ◦ τ2 (W) for the links in Figures 2.4 and 2.5.

2.13.9. Exercise

Order 0 twisted tree groups and Milnor invariants:
Check from the definitions in section 2.4 that for  6= j the coefficient of X ⊗ Xj in μ0(L) is

the linking number of L and Lj, which, via the well-known computation of linking numbers as
the count of signed intersections between the properly immersed disks D and Dj bounded
by L and Lj, is also equal to the coefficient of X ⊗ Xj in η0(τ0 (W)).

Although Milnor invariants are not usually defined for knots, for framed links it is natural
to consider the framing ƒ of L as an order 0 (length 2) integer Milnor invariant, and the
coefficient of X ⊗ X in μ0(L) is exactly ƒ when this framing is used to determine the th
longitude. To see that the coefficient in η0(τ0 (W)) of X ⊗ X is also equal to ƒ, let d denote
the number of positive self intersections of D minus the number of negative self-intersections
of D. Then the relative Euler number of D with respect to the framing ƒ on L = ∂D is equal
to ƒ − 2d (see e.g. Figure 19 of [8] and accompanying discussion), and the terms of τ0 (W)
which contribute via η0 to the coefficient of X⊗ X are exactly (d) ·  −−− + (ƒ− 2d) · −−− ,
which get sent by η0 to (ƒ) · X ⊗ X.

2.13.10. Exercise

Show that if g ∈ Tn is such that ηn(g) 6= 0 ∈ Dn, then there does not exist any twisted Whitney
tower tower W on 2–spheres in B4 such that t(W) represents g ∈ Tn . (HINT: Otherwise tubing
the spheres into disks bounded by an unlink would “create” non-trivial μ-invariants.)

2.13.11. Exercise

Check that η6((((1,2),1),2) ) 6= 0 ∈ L1 ⊗ L6. Conclude from Exercise 2.13.10 that there does
not exist A : S2 ∪ S2 £ B4 supporting a Whitney tower W with t(W) = (((1,2),1),2) , perhaps
plus trees of order > 6.

2.13.12. Exercise

Use the Whitney move twisted IHX relation of Lemma 4.5 and boundary-twisting to get the
two trees in Figure 2.7 (plus higher-order trees) from the single tree ((1,2), (1,2)) .

2.13.13. Exercise

Check that η2 ◦ τ2 (W) vanishes for the Bing double of Figure-8 knot.

2.13.14. Exercise

If a knot K bounds a Whitney tower W with t(W) = (1,1) , show that the Bing-double of K
bounds a Whitney tower V with t(V) = ((1,2), (1,2)) .

2.13.15. Exercise

Check that Conjecture 2.26 and Conjecture 2.27 are equivalent.
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2.13.16. Exercise

Show that if there exists a pair of 2-spheres in S4 supporting a Whitney tower W such that
t(W) = ((1,2), (1,2)) , then all higher order Arf invariants Arfj for j ≥ 2 vanish on all links.
(See [11, Prop.14].)

3. Whitney towers on 2-spheres in 4-manifolds

In this section we consider Whitney towers on A = A1, A2, . . . , Am £ X, where each A is a
2–sphere, and X is a 4–manifold. All manifolds are oriented and based. Each A is equipped
with a whisker, i.e. an arc running between the basepoint of A and the basepoint of X.

We will assume that A is generically immersed, and each sphere A has the same number
of positive self-intersections as negative self-intersections. This can always be arranged by
performing cusp homotopies ([13, Chap.1], same as the interior twist operation of Figure 2.3),
and is a natural assumption in the setting of Whitney towers since it is satisfied as soon as
A supports a (framed or twisted) Whitney tower of positive order. Regular homotopy classes
of such immersions are in one-to-one correspondence with homotopy classes, see e.g. [25,
Thm.1.2]. Up to isotopy, a regular homotopy is a sequence of finger moves and Whitney
moves, so homotopy invariance of invariants defined from the intersection forests of Whitney
towers can be checked combinatorially (e.g. section 4.1.9).

The classical intersection invariant λ(A, Aj) and self-intersection invariant μ(A) are re-
called in section 3.1, and we formulate these invariants in the language of Whitney towers
as order 0 invariants which give the complete obstruction to A supporting an order 1 framed
Whitney tower in section 3.2. After explaining how the order 0 intersection pairing gives the
complete obstruction to “pulling apart” a pair of spheres, i.e. making them disjoint by a ho-
motopy (section 3.3), edge decorations in π1X for order 1 trees are introduced in section 3.4
and the order 1 non-repeating invariant generalizing the classical intersection pairing is de-
fined in the setting of pulling apart triples of components of A (section 3.5 and Theorem 3.2).
In section 3.6 we briefly touch on possible higher-order non-repeating invariants and a gen-
eral obstruction theory for pulling apart multiple components.

The order 1 generalization of the classical self-intersection invariant is defined in sec-
tion 3.7. Here twistings on Whitney disks are relevant, and the vanishing of the invariant is
equivalent to the existence of an order 2 framed Whitney tower on A (Theorem 3.4).

Throughout this section, relevant open questions, problems and conjectures are included
in the discussions. Proofs of the main Theorems 3.2 and 3.4 are given in Section 4.

3.1. Classical intersection form

The first obstructions to making the components of A pairwise disjointly embedded by a ho-
motopy are the intersection invariants λ(A, Aj), which take values in the integral fundamental
group ring Z[π1X], and the self-intersection invariants μ(A), which take values in a quotient
of Z[π1X]. These invariants are defined as follows. Associate to each transverse intersection
point p ∈ A ô Aj the element gp ∈ π1X determined by a loop through A and Aj which changes
sheets at p. More precisely, such a sheet-changing loop runs along the whisker for A, then
along any choice of path in A to p, then along any choice of path in Aj to the whisker of Aj,
then along the whisker for Aj. Sheet-changing loops are required to avoid all singularities of
A and Aj other than p, so gp does not depend on the choices of paths in A and Aj between p
and their whiskers because the domains of A and Aj are simply connected. See Figure 3.1.

Summing over all such intersection points, with the usual notion of the sign εp ∈ {+,−},
defines:

λ(A, Aj) :=
∑

p∈AôAj

εp · gp ∈ Z[π1X]
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Figure 3.1. gp ∈ π1X for p ∈ A ô Aj with  6= j (left), and for  = j (right).

and

μ(A) :=
∑

p∈AôA

εp · gp ∈
Z[π1X]

{g − g−1}
.

The relations in Z[π1X] induced by g = g−1 ∈ π1X account for choices of orientations on
the sheet-changing loops through the self-intersections of A.

Up to isotopy, a regular homotopy of A is a sequence of finger moves and Whitney moves,
each of which either introduces or eliminates oppositely-signed intersections having the
same group element. So λ and μ are invariant under regular homotopy, e.g. [25, Sec.4].

3.2. Order 0 invariants

Here we slightly reformulate the classical invariants λ and μ in the language of Whitney
towers, with an eye towards higher-order generalizations.

The union A = A1∪A2∪· · ·∪Am ⊂ X is by Definition 1.7 a framed Whitney tower of order 0. To
each order 0 intersection p ∈ A ô Aj is associated the order 0 tree tp = 〈, j〉, as in section 1.10,
and we think of tp ⊂ A ∪ Aj as an embedded sheet-changing edge near p with one univalent
vertex in A and the other univalent vertex in Aj. For each such tp, choose a path in A from
the basepoint of A to the -labeled univalent vertex of tp, and a path in Aj from the j-labeled
univalent vertex of tp to the basepoint of Aj. The union of tp (oriented from  to j) together
with these paths and the whiskers on A and Aj, defines a sheet-changing loop representing
gp ∈ π1X, just as in section 3.1. We call the tree tp, together with the label gp on its edge and
an orientation of the edge from  to j, a decorated tree for p.

Let T0 denote the quotient of the free abelian group on order 0 decorated trees by the
following OR orientation relation:

OR:  −→
gp
−−− j =  −−−

g−1p
−←− j

Now the classical invariants λ0 := λ and μ0 := μ can be expressed as a single order 0
invariant τ0(A) represented by the intersection forest t(A):

τ0(A) :=
∑

p∈AôAj

εp ·  −→
gp
−−− j ∈ T0

In the language of Whitney towers we have:

Theorem 3.1. τ0(A) = 0 if and only if A supports an order 1 framed Whitney tower.

Recall from Definition 1.7 that A supporting an order 1 framed Whitney tower W means
that all intersections of A are paired by framed order 1 Whitney disks in W. The idea of the
“only if” direction of the proof is that all intersections can be arranged in oppositely-signed
pairs having the same group element, after orienting sheet-changing loops appropriately.
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Then null-homotopic Whitney circles can be constructed from the pairs of sheet-changing
loops. These Whitney circles bound immersed Whitney disks which can be made framed by
boundary-twisting (Figure 2.2). See Exercise 3.9.5. For the “if” direction see Exercise 3.9.4.
See also [25, Lem.4.3].

It can always be arranged that the Whitney disks in an order 1 framed Whitney tower are
disjointly embedded (Exercise 1.22.13), but they will in general have interior intersections
with A which obstruct using them to guide Whitney moves homotoping A to an embedding.

We remark that for half-dimensional spheres A : Sd1, S
d
2, . . . , S

d
m £ X

2d in a 2d-dimensional
manifold with d > 2 the invariants analogous to λ and μ give the complete obstruction to
embedding A in X2d, because the interiors of Whitney disks on A will have interiors disjoint
from A by general position.

Notice that τ0(A) splits into a direct sum of non-repeating and repeating invariants τ0(A) =
∑

 6=j λ0(A, Aj) ⊕
∑

 τ0(A). Before generalizing the full order 0 invariant τ0(A) to an order 1
invariant τ1(A), we will first consider the intermediate problem of generalizing the non-
repeating summands λ0(A) :=

∑

 6=j λ0(A, Aj) to order 1 invariants λ1(A, Aj, Ak) for triples
with distinct , j, k, and discuss the relationship to “pulling apart” triples of components (mak-
ing them pairwise disjoint by a homotopy).

3.3. Pulling apart pairs of spheres

A

A

A

W
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1

1

2

2 A

A

A
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2(1,2)

A

A

A

A

1

1

2

A

A

A

A

1

1

2

22

ch
an
ge

vie
w

W(1,2)
finger

move

move

Whitney

Figure 3.2

The vanishing of λ0(A1, A2) = 0 ∈ Z[π1X] implies the existence of Whitney disks pairing
A1 ô A2 (Exercise 3.9.1), and the union of A1 ∪ A2 together with a collection of such Whitney
disks forms an order 1 non-repeating Whitney tower W, cf. Definition 1.9. As an illustration of
the proof of Theorem 1.10 in this easiest case, Figure 3.2 shows how the existence of such a
W leads to a homotopy that makes A1 and A2 disjoint: Finger moves as in the top of Figure 3.2
make A2 disjoint from the interiors of all the Whitney disks, at the cost of only creating self-
intersections in A2. Now doing all the Whitney moves on A1 makes A1 ∩A2 = ∅ at the cost of
only creating self-intersections in A1 as in the bottom of Figure 3.2. Any self-intersections and
intersections among the Whitney disks will only lead to the creation of more self-intersections
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in A1 upon doing the Whitney moves, hence such intersections have been suppressed from
view in Figure 3.2.

The procedure of Figure 3.2 appears to fail in the presence of a third sphere A3, as it is
not clear how to eliminate any W(1,2) ∩ A3 without creating more intersections between A3
and A1 or A2. In order to generalize λ0(A1, A2) to an order 1 invariant λ1(A1, A2, A3) which
“counts” such order 1 intersections W(,j) ∩ Ak and gives the complete obstruction to pulling
apart triples of 2-spheres, we next introduce edge decorations for order 1 trees.

3.4. Decorated trees for order 1 intersections

Let W(,j) be a Whitney disk for a pair of intersections in A ô Aj. To each intersection p ∈
W(,j) ô Ak we associate a decorated order 1 tree tp which is gotten by labeling each edge of
the usual tree 〈(, j), k〉 from section 1.10 by an element of π1X as in Figure 3.3. This requires
a choice of whisker running from the trivalent vertex of each tree to the basepoint of X, and
the group elements are determined by loops formed using sheet-changing edges oriented
towards the Whitney disk followed by the chosen whisker emanating from the trivalent ver-
tex. More precisely, taking tp to be embedded in A ∪ Aj ∪ Ak ∪W(,j) as in Figure 3.3, each
edge is a sheet-changing embedded arc which can be oriented to change sheets into the
Whitney disk, and each univalent vertex can be connected by a path in its order 0 surface to
the surface basepoint. Together with the whiskers on A, Aj, Ak and the trivalent vertex we
get three oriented loops determining the corresponding edge decorations , b, c ∈ π1X.

tp

p

W(i,j)

Ak

Aj

Ai a

bc

i

jk

a

bc

Figure 3.3. Edge decorations , b, c ∈ π1X.

3.5. The order 1 non-repeating intersection invariant λ1

Consider a triple of immersed spheres A = A1, A2, A3 £ X supporting an order 1 non-repeating
Whitney tower W, i.e. all intersections A ô Aj for distinct , j ∈ {1,2,3} are paired by Whitney
disks in W. The existence of such an order 1 non-repeating Whitney tower W is equivalent to
A having pairwise vanishing λ0(A, Aj) = 0 ∈ Z[π1X] for  6= j (Exercise 3.9.2), which we can
succinctly express as λ0(A) = 0.

Recall from section 1.18.1 that if tp associated to p ∈ W has univalent vertices labeled
distinctly by 1, 2 and 3, then tp is called a non-repeating tree and p is called a non-repeating
intersection.

Denote by Λ1 := Λ1(π1X) the quotient of the free abelian group on order 1 decorated
non-repeating trees by the AS antisymmetry and HOL holonomy relations of Figure 3.4.

For A £ X supporting an order 1 non-repeating Whitney tower W, we define the order 1 non-
repeating intersection invariant λ1(A) in the quotient of Λ1 by the INT intersection relations
shown in Figure 3.5:

λ1(A) :=
∑

εp · tp ∈ Λ1/ INT
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Figure 3.4. The Antisymmetry and Holonomy relations; , b, c, g ∈ π1X.

where the sum is over all order 1 non-repeating intersections p in W.
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Figure 3.5. The INT intersection relations in the target of λ1, with S : S2 £ X
varying over generators for π2(X) as a π1X-module.

We next discuss how the AS antisymmetry, HOL holonomy and INT intersection relations in
the target of λ1 account for indeterminacies due to choices in the construction of the (based,
oriented) order 1 non-repeating Whitney tower W:

The AS relations (Figure 3.4 left) account for the choice of orientations on the Whitney disks
via a fixed convention choice for the induced vertex orientation of the trees (section 1.19) so
that signs of the order 1 intersections are well-defined (section 4.7). (In this non-repeating
order 1 setting, AS relations could in fact be avoided by using the cyclic ordering of the
distinct labels to prescribe orientations on all the Whitney disks in W, cf. Exercise 3.9.8.)

The HOL relations (Figure 3.4 right) account for the choices of whiskers on the trivalent
vertices, since changing such a whisker corresponds to simultaneous right multiplication on
the three group elements decorating the edges of the tree. We remark that by the splitting
operation (section 4.3) it can be arranged that each Whitney disk contains exactly one tree,
so that in a split Whitney tower choosing a whisker for each trivalent vertex is the same as
choosing a whisker for each Whitney disk.

The INT relations (Figure 3.5 left) account for choices of the interiors of Whitney disks in
W, and depend on A and π2X via the order 0 intersection pairing λ0. To clarify notation:
The terms of λ0(Ak , S) decorating the edge of the tree in the left of Figure 3.5 denote a
linear combination of signed trees (section 4.1.2). Here S is a 2-sphere that has been tubed
into the Whitney disk W(,j), and λ0(Ak , S) is computed using a whisker for S given by the
tube together with a whisker for the trivalent vertex of the tree (, j) in W(,j). Note that the
illustration of S on the right side of Figure 3.5 is schematic, as suggested by the dotted
subarc.

The following characterization of λ1(A1, A2, A3) shows in particular that it does not depend
on the choice of order 1 non-repeating Whitney tower:

Theorem 3.2. λ1(A1, A2, A3) only depends on the homotopy classes of the A, and the fol-
lowing three statements are equivalent:
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(i) λ1(A1, A2, A3) vanishes.

(ii) A1 ∪ A2 ∪ A3 admits an order 2 non-repeating Whitney tower.

(iii) A1, A2, A3 can be made pairwise disjoint by a homotopy.

Theorem 3.2 can be proved using arguments detailed in Section 4 (see Exercise 4.8.17),
with the equivalence of statements (ii) and (iii) being a special case of Theorem 1.10 (see
Exercise 3.9.6 for a proof in this case).

In the case that X is simply connected λ1(A1, A2, A3) reduces to the Matsumoto triple [20]
and the implication (i) ⇒ (iii) was shown by Yamasaki [35].

For more than three components one similarly defines the order 1 non-repeating intersec-
tion invariant λ1(A) of A = A1, A2, . . . , Am by counting, modulo the AS, HOL and INT relations,
the distinctly-labeled decorated order 1 trees in the intersection forest of any order 1 non-
repeating Whitney tower on A. Then λ1(A) is a homotopy invariant of A which vanishes if and
only if A supports an order 2 non-repeating Whitney tower.

Note that the OR relations of section 3.2 are not needed in the order 1 setting because we
are counting order 1 trees so edges can always be taken to be oriented towards the trivalent
vertex.

3.6. Pulling apart m-tuples of spheres

As described in detail in [31], the above discussion gives the framework for a complete ob-
struction theory for pulling apart m 2-spheres, i.e. making the spheres pairwise disjoint by a
homotopy: Theorem 1.10 says that the existence of an order m − 1 non-repeating Whitney
tower on A1 ∪ A2 ∪ · · · ∪ Am suffices to pull the A apart. And given an order n non-repeating
Whitney tower W supported by A = A1, A2, . . . , Am, the intersection forest t(W) represents an
obstruction to the existence of an order (n + 1) non-repeating Whitney tower. Denoting by
Λn(m) the abelian group generated by order n trees with distinctly labeled univalent vertices
from {1,2, . . . ,m} and edges decorated by elements of π1X, modulo OR, AS, HOL and IHX
relations, where for n ≥ 2 the IHX relation is as in 1.15 but with distinct univalent labels and
with edge decorations, this obstruction lives in a quotient of Λn(m) by order n intersection
relations INTn(A) which correspond to changes in t(W) coming from tubing Whitney disk inte-
riors into 2-spheres. Since all the relations correspond to geometric manipulations of W, the
vanishing of the obstruction implies the existence of an order (n+ 1) non-repeating Whitney
tower via the same order-raising maneuvers as in Section 4.6, which are all homogeneous in
the univalent labels.

There are two main challenges here: One is concisely formulating the INTn(A) intersection
relations, which for n ≥ 2 can be non-linear. And the other is showing that no additional
relations other than OR, AS, HOL, IHX and INTn(A) are needed to ensure that λn(A) does not
depend on the choice of W. This second issue essentially amounts to showing that λn(A) does
not depend on the choices of Whitney disk boundaries. Evidence that the AS, HOL and IHX
relations suffice to give independence of Whitney disk boundaries comes from Theorem 8 of
[31] which states that λn(A) ∈ Λn(m) does not depend on the choice of W in the setting that
the components A are properly immersed disks into the 4-ball, where INTn(A) relations are
trivial (and OR is not relevant).

By [31, Lem.19], Λn(m) is isomorphic to the direct sum of
� m
n+2

�

n!-many copies of the in-
tegral group ring Z[π1X(n+1)] of the (n + 1)-fold cartesian product π1X(n+1) = π1X × π1X ×
· · · × π1X. Note that Λn(m) is trivial for n ≥m − 1 since an order n unitrivalent tree has n + 2
univalent vertices. The absence of torsion in Λn(m) is in alignment with the fact that the tor-
sion subgroup (which is only 2-torsion) of the tree group Tn of Definition 2.1 (repeating labels
allowed) corresponds to the obstructions to converting twisted Whitney towers to framed
Whitney towers in the 4–ball [9]. Such obstructions are not relevant in the non-repeating
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setting since the boundary-twisting operation (Figure 2.2) can be used to eliminate twisted
Whitney disks at the cost of only creating intersections whose trees do not have distinctly-
labeled univalent vertices.

See [31] for further discussion of pulling apart m components, including examples where
λn(A) is well-defined.

The case of pulling apart 4-tuples of spheres in a simply connected 4–manifold is al-
ready interesting, and only partially understood. In [31, Sec.8] the order 2 invariant λ2(A)
for A = A1, A2, A3, A4 supporting an order 2 non-repeating tower W in a simply connected X
is examined in detail, including a precise formulation of the INT2(A) relations which account
for choices of Whitney disk interiors.

The following is Conjecture 29 of [31]:

Conjecture 3.3. For any A = A1, A2, A3, A4 supporting an order 2 non-repeating tower W in
X, the components of A can be pulled apart if and only if λ2(A) ∈ Λ2/ NT2(A) as defined in
[31, Sec.8] vanishes.

As explained in [31, Sec.8.3.6], the computation of the image of the INT2(A) relations in
Λ2(4) ∼= Z⊕ Z leads to some interesting number theory [18].

3.7. The order 1 self-intersection invariant τ1

Having considered non-repeating order 1 invariants which generalize the classical order 0
intersection pairing and fit into an obstruction theory for pulling apart m-tuples of spheres,
we next describe the order 1 generalization of the classical self-intersection invariant which
fits into an obstruction theory for the existence of order n framed Whitney towers.

For simplicity we restrict attention to the case of a single immersed 2-sphere A : S2 £ X4

with τ0(A) = 0 (or in classical notation μ0(A) = 0). The vanishing of τ0(A) means that A
admits an order 1 framed Whitney tower W, and we want to “count” the decorated trees tp
associated (as in section 3.4) to the order 1 intersections p in W to define an order 1 invariant
τ1(A) which does not depend on the choice of W and gives the complete obstruction to A
bounding an order 2 framed Whitney tower.

Denote by T̃1 := T̃1(π1X) the quotient of the free abelian group on decorated order 1 trees
by the above AS, HOL relations (Figure 3.4) and also the new FR framing relations shown in
Figure 3.6. The necessity of these FR relations is illustrated (schematically) on the right of
Figure 3.6, which shows how performing opposite boundary-twists (Figure 2.2) on a framed
Whitney disk W along different arcs of ∂W yields a new framed Whitney disk that has two
interior intersections with A whose corresponding trees equal to the terms of an FR relation.
Univalent labels are dropped from our trees since we are now working with just a single
component. So the previously defined AS and HOL relations are now expressed in T̃1 by the
same equations but without univalent labels.

0+ba =

FR: W

b

a

ba

a b

Figure 3.6. The FR framing relations; , b ∈ π1X
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We also need to refine the INT relations to account for the effect that tubing into a sphere
can have on Whitney disk twistings. For instance, if a framed Whitney disk is tubed into
a sphere S whose normal bundle has non-trivial 2nd Stiefel-Whitney number ω2(S), then a
framed Whitney disk can be recovered by boundary-twisting. Figure 3.7 shows these refined
INT relations in the target of τ1, with the edge decoration ω2(S) identified with 0 or 1 in
Z[π1X] depending on whether it is trivial or not. This is explained in complete detail in sec-
tion 4.1, where the full definition of the INT relations is given, which also allows for S to be
an immersed RP2 in certain cases depending on the elements , b.

0a
b

(A ,S)k

INT:

λ0

a
b

(S)2ω

Figure 3.7. The INT intersection relations in the target of τ1; with , b ∈ π1X,
and S : S2 £ X varying over generators for π2(X) as a π1X-module.

So for A with vanishing τ0(A), choose an order 1 framed Whitney tower W on A and define
the order 1 framed intersection invariant:

τ1(A) :=
∑

εp · tp ∈ T̃1/ INT

where the sum is over all order 1 intersections p in W.
The following result of [29] shows that τ1(A) is an obstruction to homotoping A to an

embedding, and in particular that it does not depend on the choice of W:

Theorem 3.4. τ1(A) only depends on the homotopy class of A, and the following four state-
ments are equivalent:

(i) τ1(A) vanishes.

(ii) A admits an order 2 framed Whitney tower (cf. Definition 1.7).

(iii) A admits a height 1 Whitney tower (cf. Definition 1.12).

(iv) A is stably homotopic to an embedding.

Here A being stably homotopic to an embedding means that A is homotopic to an embed-
ding in the connected sum X#nS2 × S2 of X with some number n copies of S2 × S2.

See section 4.1 for proof that τ1(A) is a well-defined homotopy invariant. The equivalence
of statements (i) and (ii) is shown in section 4.2.

See [29, Thm.2] for the equivalence of statements (i) and (iii); and [28, Cor.1] for the
equivalence of statements (i) and (iv).

3.8. Examples and questions

If X is simply-connected then the target T̃1/ INT of τ1(A) is Z/2Z or 0, depending on whether
A is spherically characteristic or not. Here A is spherically characteristic if λ0(A, S) ≡ λ0(S, S)
mod 2 for all S ∈ π2X. In this simply-connected case T̃1 is generated by the order 1 tree with
all trivial edge decorations, which is 2-torsion by the AS relations, and is equal to zero by the
INT relations if A is not spherically characteristic.

For example, 3CP1 £ CP2 is spherically characteristic, and Figure 3.8 shows the computa-
tion of τ1(3CP1) = 1 6= 0 ∈ T̃1/ INT(3CP1) ∼= Z/2Z, so 3CP1 is not homotopic to an embedding
(compare [17]).
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W

Figure 3.8. Left: The boundary circle in S3 of the sum of three parallel copies
of the +1-framed 2-handle in a standard handle-body description of CP2. Mov-
ing to the right: The track into the 0-handle B4 of a null-homotopy of this circle
describes the rest of 3CP1, with two self-intersections admitting the framed
Whitney disk W that has a single transverse intersection with 3CP1.

For X not necessarily simply-connected, taking the quotient of T̃1 by π1X→ 1 yields τ1(A) ∈
Z/2Z or 0 depending on whether A is spherically characteristic or not, and in this quotient
target τ1 reduces to the spherical Kervaire–Milnor invariant km of [13, 33].

Even after trivializing all π1X-decorations τ1 = km sees global information in closed 4-
manifolds:

Theorem 3.5 (Freedman–Kirby, Kervaire–Milnor, Stong). Suppose X is a smooth closed 4-
manifold, and H2(X;Z/2Z) is spherical. If A : S2 £ X is characteristic and μ0(A) = 0, then

(π1X→ 1) : τ1(A) 7→
A · A − signature(X)

8
mod 2

See the end of [33] for a proof.
On the other hand, for π1X non-trivial the cardinality |T̃1(π1X)| can be large. For example,

if π1X is left-orderable and the INT relations are trivial then T̃1(π1X) is isomorphic to Z∞ ⊕
(Z/2Z)∞ (see [28, Prop.2.3.1]).

Let  be a finitely presented group, and let g be any element of T̃1(). Then one can find
a 4-manifold X with non-empty boundary such that π1X = , and A : S2 £ X with INT(A) trivial
and τ1(A) = g (Exercise 3.9.9).

But finding examples of non-trivial τ1(A) in closed 4-manifolds that depend on non-trivial
edge decorations appears to be difficult, and no such examples are currently known. Let
(1,1,1) denote the order 1 tree with all three edges decorated by the trivial element 1 ∈ π1X.
Then (1,1,1) is 2-torsion by AS (or FR) relations, and generates an order 2 subgroup of
T̃1(π1X), for any π1X. We have the following open “realization problem” for closed X:

Open Problem 3.6. Find an example of A £ X such that the following three statements all
hold:

(i) X is closed, and

(ii) |T̃1(π1X)/ INT(A)| ≥ 3, and

(iii) τ(A) is not contained in the subgroup generated by [(1,1,1)] ∈ T̃1(π1X)/ INT(A).

Poincare duality contributes to the difficulty of Problem 3.6 since if λ0(A, S) = 1 for some
S ∈ π2X, then |T̃1(π1X)/ INT(A)| ≤ 2 by the INT relations and τ1 reduces to km.

An easier to state, but possibly more difficult, open realization problem is: Find an example
of A £ X such that km(A) = 0 but τ1(A) 6= 0.

In light of Theorem 3.5 and Problem 3.6 one is led to the question:

Question 3.7. What global information is carried by non-trivial π1-decorations in τ1 in closed
4-manifolds?
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In comparison with the classifications of order n framed and twisted Whitney towers on 2-
disks in the 4-ball ([11] and Section 2), the higher-order invariants invariants for 2-spheres in
4-manifolds have barely begun to be defined, even in simply connected 4-manifolds. Defining
an order 2 framed invariant is already an interesting challenge:

Open Problem 3.8. For A : S2 £ X with vanishing τ1(A), formulate and prove invariance
of an order 2 framed invariant τ2(A) whose vanishing is equivalent to A admitting a framed
order 3 Whitney tower.

In addition to the issues that arise as in Conjecture 3.3, here one has to also keep track of
Whitney disk twistings.

3.9. Section 3 Exercises

3.9.1. Exercise:

Suppose A and Aj are oriented immersed 2-spheres in an oriented 4-manifold X, and p and
q are oppositely signed intersections in A ô Aj with equal associated group elements gp =
gq ∈ π1X. Check that the union of a path in A from p to q with a path in Aj from q to p is a
null-homotopic loop in X. Conclude that p and q admit an immersed Whitney disk.

3.9.2. Exercise:

For a collection of immersed 2-spheres A = A1, A2, . . . , Am £ X4, the vanishing of λ0(A)
(section 3.2) is equivalent to the pairwise vanishing of the classical intersection pairing
λ0(A, Aj) ∈ Z[π1X] for  6= j (section 3.1). Show that λ0(A) vanishes if and only if A supports
an order 1 non-repeating Whitney tower.

3.9.3. Exercise:

Show that any twisted Whitney disk can be converted to a framed Whitney disk having the
same boundary by applying the boundary-twisting operation of section 2.2.

3.9.4. Exercise:

Show that τ0(A) vanishes if A supports an order 1 framed Whitney tower.

3.9.5. Exercise:

Show that A supports an order 1 framed Whitney tower if τ0(A) vanishes.

3.9.6. Exercise:

If A1, A2, A3 support an order 2 non-repeating Whitney tower, show that A1, A2, A3 can be
made pairwise disjoint by a homotopy.

3.9.7. Exercise:

If order 1 intersections p, q ∈ W(,j) ô Ak are paired by an order 2 Whitney disk W((,j),k),
then p and q have opposite signs by the definition of Whitney disks. Check that the order 1
decorated trees tp and tq associated to such p and q are equal for appropriate choices of
trivalent whiskers.
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3.9.8. Exercise:

Show that in the target of λ1(A1, A2, A3) of section 3.5 the AS relations could be avoided by
using the cyclic ordering of the distinct labels to prescribe orientations on all the Whitney
disks in W (via a choice of positive or negative corner convention cf. section 1.19).

3.9.9. Exercise:

Let  be a finitely presented group, and let t be any order 1 decorated tree representing an
element [t] ∈ T̃1(). Find a 4-manifold X with non-empty boundary such that π1X = , and
A : S2 £ X with INT(A) trivial and τ1(A) = [t].

3.9.10. Exercise:

Generalizing the previous exercise, let  be a finitely presented group, and let g be any
element of T̃1(). Find a 4-manifold X with non-empty boundary such that π1X = , and
A : S2 £ X with INT(A) trivial and τ1(A) = g.

3.9.11. Exercise:

Generalizing the previous exercise, let  be a finitely presented group, let g be any element
of T̃1(), and let {z1, z2, . . . , zn} be any collection z ∈ Z[]. Find a 4-manifold X with non-
empty boundary such that π1X = , and A : S2 £ X with INT(A) determined by λ0(A, S) = z
for S generating π2X, and τ1(A) = g.

4. Appendix

Section 4.1 gives a detailed proof of the homotopy invariance of the order 1 invariant τ1(A)
from section 3.7, and section 4.2 proves that τ1(A) is the complete obstruction to A support-
ing an order 2 framed Whitney tower. This proves the first two statements of Theorem 3.4,
and simpler versions of the analogous arguments prove the first two statements of Theo-
rem 3.2 (Exercise 4.8.17).

The splitting of Whitney towers illustrated in Figure 1.10 is extended to twisted Whitney
towers in section 4.3.

Whitney move versions of the IHX and twisted IHX relations are described in detail in sec-
tion 4.5. These constructions are essential to the framed, twisted, and non-repeating order-
raising obstruction theories. A proof of the twisted order-raising Theorem 2.5 is sketched in
section 4.6.

4.1. Homotopy invariance of τ1(A)

Here we show that for A : S2 £ X4 the order 1 framed intersection invariant τ1(A) of Theo-
rem 3.4 in section 3.7 only depends on the homotopy class of A.

The definition of τ1(A) requires that A supports an order 1 framed Whitney tower W, the
existence of which is equivalent to A having vanishing order 0 self-intersection invariant
τ0(A) = 0 by Theorem 3.1. As recalled and clarified below, τ1(A) is determined by the inter-
section forest t(W), which in this setting is a multiset of signed decorated order 1 trees, one
for each transverse intersection between A and a Whitney disk in W. The main challenge is
to show that the element represented by t(W) in the target of τ1(A) does not depend on the
choices of oriented Whitney disks in W. Then invariance under homotopies of A will be shown
in section 4.1.9.
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4.1.1. Order 1 tree notation

We introduce the following streamlined notation for the order 1 decorated trees of section 3.4
in our current 1-component setting: Since now the univalent labels are not relevant, a tree
is determined by a cyclic ordering of the elements of π1X decorating the edges. By appro-
priately choosing the whisker on the trivalent vertex, one edge decoration on each tree can
be normalized to the trivial element 1 ∈ π1X. So for , b ∈ π1X we will use the notation (, b)
to denote the decorated order 1 tree with one edge decorated by 1 and the other two edges
decorated by  and b respectively, with the vertex orientation given by the cyclic ordering
1→ → b.

As before, any edge decorations in Z[π1X] are understood to be linear combinations of
trees.

4.1.2. Relations in target of τ1

Recall from section 3.7 that T̃1 := T̃1(π1X) denotes the abelian group on decorated order 1
trees modulo the AS antisymmetry, HOL holonomy and FR framing relations (see just below),
and that τ1(A) takes values in T̃1 modulo the INT intersection relations. Since these last
relations depend on A we sometimes denote them by INT(A) for emphasis.

The relations in the target of τ1(A) expressed in Z[π1X] × Z[π1X] via the streamlined
notation are:

AS: (, b) = −(b, )

HOL: (, b) = (b−1, −1) = (b−1, b−1)

FR: (1, ) + (, ) = 0

INT: (, λ0(A, S) + ω2(S) · 1) = 0

Here , b ∈ π1X, and S ranges over generators for π2X (as a module over π1X).
The AS and HOL relations imply that the decorated trees (,1) and (, ) are 2-torsion

elements, which by FR are equal. This will be used in several places below.
Terms are expanded linearly in the INT relations, so

(, λ0(A, S) + ω2(S) · 1) = (, λ0(A, S)) + (,ω2(S) · 1),

and
(, λ0(A, S)) = (,

∑

εp · gp) :=
∑

εp · (, gp)

for λ0(A, S) =
∑

p∈AôS εp · gp.
For the case 2 = 1 ∈ π1X in the INT relations, we allow S to be an immersed RP2 rep-

resenting , i.e.  ∈ π1X is the image of π1RP2. When S is an RP2 the order 0 intersection
pairing λ0(A, S) is only well-defined up to right multiplication by  and change of sign, but the
AS and HOL relations make (, λ0(A, S)) well-defined in T̃1. This will be discussed in detail in
section 4.1.7 where this form of the INT relation is used in the proof that τ1(A) is well defined.

4.1.3. Definition of τ1(A)

For A satisfying τ0(A) = 0, choose any order 1 framed Whitney tower W on A and define:

τ1(A) :=
∑

εp · tp ∈ T̃1/ INT(A)

where the sum is over all transverse intersections p between A and the Whitney disks in W.
We use the positive corner convention from section 1.19 for inducing cyclic orientations at
the trivalent vertices from the Whitney disk orientations.

We remark that by eliminating all order 2 intersections using the pushing-down opera-
tion (Exercise 1.22.13) it may be arranged that the intersection forest t(W) (section 1.13) is
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equal to the sum defining τ1(A), i.e. τ1(A) = [t(W)] ∈ T̃1/ INT(A). In the following this will be
assumed for clarity, although it is not necessary.

4.1.4. Independence of Whitney disk interiors:

Let W be a Whitney disk in W. If V is another framed Whitney disk with same boundary γ as
W, then the union of W and V is a map of a 2–sphere, which might not be smooth along γ. We
want to use this sphere to express, via an INT relation, the change in τ1(A) due to replacing
W by V. It is not obvious what intersections with A might be created by perturbing the sphere
to be smooth and transverse to A, so we will proceed carefully.

Denote by α and β the two closed subarcs of α ∪ β = γ := ∂W = ∂V that run between the
self-intersections p and q of A that are paired by W and V.

A small collar of α in W determines a 1-dimensional subbundle α of νXA|α, the normal
D2-bundle to A restricted to α. Similarly, a small collar of α in V determines a 1-dimensional
subbundle α of νXA|α. Note that at each of the endpoints p and q of α there is a canonical
1-dimensional subspace of νXA|α given by a short subarc of β. We may assume that α = α
near p and q by a small isotopy, so there is a relative rotation number m ∈ Z of α with
respect to α. A boundary-twist (Figure 2.2) on V changes m by ±1, so by performing m-
many boundary-twists on V we can get a new Whitney disk V′ such that the corresponding
1-dimensional subbundle ′α of νXA|α has zero relative rotation number with respect to α,
and hence it can be arranged by a small isotopy of V′ near α that ′α =α everywhere along
α.

Applying the same discussion and boundary-twisting n times along β, we can assume that
we have also arranged that a small collar ′β of β in V′ satisfies ′β =β ⊂ νXA|β everywhere
along β.

Now the unions  :=α∪β and ′ := ′α∪
′
β are collars of γ in W and V′ which are equal

 = ′.
Removing these collars and gluing we get a map of a 2-sphere S := (W \ ) ∪ (V′ \ ′)

which is smooth except along the gluing circle γ′ := ∂(W \) = ∂(V′ \ ′). Since γ′ is disjoint
from A, perturbing S to be smoothly immersed will not create any new intersections with A.
(Note that we do not need to control self-intersections of S because they do not correspond to
contributions to τ1.) The intersections between S and A are transverse and consist of A ôW
and A ô V′, where A ô V′ consists of A ô V together with the (m + n)-many intersections of
A ô V′ which were created by the boundary-twists on V. These boundary-twist intersections
correspond to the trees m(1, )+n(, ), where m twists were done along the arc α ⊂ γ whose
corresponding edge decoration has been normalized to 1, and n twists were done along the
other arc β ⊂ γ whose corresponding edge decoration is  (Figure 3.6, with b = 1). Taking the
orientation of S to be induced by the orientation of V′ and the opposite orientation of W, we
have that the difference in τ1(A) due to replacing W by V is (, λ0(A, S)) +m(1, ) + n(, ).
It just remains to check that ω2(S) ≡m + n mod 2, so that this difference is an INT relation.

To compute ω2(S) as a mod 2 self-intersection number, observe that S is homotopic to
S′ = W ∪ V′ by a homotopy supported near the common collars  = ′ that were deleted to
form S (Exercise 4.8.1). Now we can assume that S′ has been perturbed to be smooth along
γ without worrying about creating intersections with A since we will only be counting the mod
2 intersections between S′ and a normal push-off S′′. Form S′′ by taking any Whitney parallel
push-off of γ and extending over W and V′ by Whitney sections to get the two hemispheres
of S′′, and count the number of intersections in S′ ô S′′: The number of intersections between
W and its push-off must be even, since W is framed. The number of intersections between V′

and its push-off must equal m+n mod 2, since V′ was created by m+n boundary-twists on the
framed V. Each transverse intersection between W and V′ will contribute two intersections
between their push-offs.
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So we have ω2(S) ≡ m + n mod 2, and it follows that the change in τ1(W) resulting from
replacing W by V is exactly described by the INT(A) relation:

(, λ0(A, S)) +m(1, ) + n(, ) = (, λ0(A, S) + ω2(S) · 1)

4.1.5. Independence of Whitney disk boundaries:

To show that τ1(W) does not depend on the choices of boundaries of the Whitney disks,
for fixed pairings of the self-intersections in A, it is convenient to temporarily weaken the
definition of an order 1 framed Whitney tower by allowing transverse intersections among
the boundaries of the Whitney disks in W (following [13, Sec.10.8] and [29]). The definition
of τ1 is extended to such Whitney towers by assigning trees to the boundary intersections
between Whitney disks in the following way.

The Whitney disk orientations induce orientations on their boundaries via the usual con-
vention that

−→
∂W together with a second inward pointing vector give the orientation of W. We

will use the notation ∂+W to indicate the boundary arc of W that is oriented towards the pos-
itive self-intersection of A paired by W, and ∂−W for the boundary arc of W that is oriented
towards the negative self-intersection paired by W.

Let p ∈ ∂εW ∩ ∂δV, for ε, δ ∈ {+,−}, be a point such that the ordered pair of tangent
vectors (

−−→
∂εW,

−−→
∂δV)p is equal to the orientation of A at p. Choose whiskers on the trivalent

vertices of the rooted trees associated to W and V so that the edges dual to ∂εW and ∂δV are
each decorated by the trivial element 1 ∈ π1X. This determines elements  and b decorating
the other edges of the two respective trees. See Figure 4.1. Define the signed tree εp · tp
associated to such a p by:

(4.1) εp · tp := −εδ · (ε, bδ)

where εp, ε, δ ∈ {+,−}Ò={+1,−1}. The reason for the minus sign in Equation (4.1) will be
made clear in Figure 4.3 below.

b

WA 1

1

a

V
p

Figure 4.1. The case ε = + = δ in Equation (4.1): The illustrated intersection
point p ∈ ∂εW ∩ ∂δV between Whitney disk boundaries is assigned the signed
tree εp · tp = −εδ(ε, bδ) = −(, b).

One can check that this definition of tp does not depend on the choices made (Exer-
cise 4.8.2). The extended version of τ1(A) is defined by including all such tp in the sum.
Since all boundary intersections can be eliminated by finger moves which create interior in-
tersections having the exact same trees (Figure 4.2), this extended definition can always be
reduced to the original one.

Properly interpreted, the formula assigning tp to p ∈ ∂W ∩ ∂V also works when W = V. For

instance, for p ∈ ∂−W ∩ ∂+W such that the orientation of A is equal to (
−−→
∂−W,

−−→
∂+W)p, then
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b

W
1

1

a

V

p'

a

A

Figure 4.2. Eliminating p ∈ ∂+W ∩ ∂+V from Figure 4.1 by pushing across the
positive self-intersection paired by W creates a positive intersection p′ ∈ A ô
V with signed tree εp′ · tp′ = +(b, ) = −(, b) = εp · tp.

εp · tp = −(, −1), where the rooted tree associated to W has decorations 1 and  on the
edges dual to the ∂+W and ∂−W boundary arcs respectively. (Exercise 4.8.2.)

The proof of independence of Whitney disk boundaries now goes as follows. For a fixed
choice of pairings of self-intersections induced by a given collection of Whitney disks, any
other configuration of Whitney disk boundaries can be achieved by a regular homotopy of
(collars of) the given Whitney disk boundaries, fixing the self-intersection points of A (Clari-
fication: we mean here that this regular homotopy is induced by a regular homotopy of the
preimages of the Whitney disk boundaries in the domain of A, and extends to a regular ho-
motopy of collars of the Whitney disks in X). During such a homotopy, τ1 does not change
since boundary intersections come and go in canceling pairs, or accompanied by a canceling
interior intersection when pushing over a self-intersection point of A, see Figure 4.3 for one
case and Exercise 4.8.3 for the others. (This step uses the fact that the domain of A is simply
connected.)

a

W

A

1

V

p
q

1

b

b

Figure 4.3. Pushing ∂+W into ∂+V across the positive self-intersection of A
paired by V creates p ∈ ∂+W∩∂+V and q ∈ A ôW with algebraically canceling
signed trees εp · tp = −(, b) = −εq · tq.

4.1.6. Independence of pairings of self-intersections:

Let W be a Whitney disk in W pairing self-intersections p and q, and let W′ be another
Whitney disk in W pairing self-intersections p′ and q′, such that all these self-intersections
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determine the same element of π1X. Then there exists a framed Whitney disk V′ pairing p′

and q such that ∂V′ is disjoint from all singularities in W (including Whitney disk boundaries,
cf. Figure 4.2). Now a framed Whitney disk V pairing p and q′ can be constructed from W and
W′ (minus small corners) and a parallel of V′ (with the orientation reversed) as illustrated in
Figure 4.4.

Replacing W and W′ with V and V′ in W does not change τ1(A) since the order 1 dec-
orated trees corresponding to the intersections A ô V′ cancel with those corresponding to
the oppositely-signed parallel copy of V′ in V (Exercise 4.8.4). Any choice of pairings can be
achieved by iterating this construction.

p q
W W'

q'p' p'qp q'

V'

V V

V

=

Figure 4.4. Transverse intersections between Whitney disks and A are not
shown. This picture is otherwise accurate up to diffeomorphism since W, W′

and V′ can be assumed to be framed and embedded. The dotted sub-arc of
the doublepoint loop for p is understood to extend outside the 4–ball of the
figure.

4.1.7. The INT relation for RP2s

For use in the next step of the proof, we clarify here the INT relation (, λ0(A,R)+ω2(R) ·1) =
0 ∈ T̃1 for the case where 2 = 1 and R : RP2 £ X.

The pairing λ0(A,R) sums the signed group elements εp ·gp associated to each p ∈ A ô R as
in section 3.1, except that because RP2 is neither simply connected nor orientable now both
εp and gp depend on the choice of sheet-changing loop through p. Let d be a sheet-changing
loop through p, and let dR be the path d ∩ R. Then gp = [d] ∈ π1X is the group element
associated to p using d, and by definition the sign εp is gotten by transporting a local orien-
tation of R from the basepoint of R back along dR to p, where it is paired with the orientation
of A at p for comparison with the orientation of X. Any different choice of dR changes gp
by right multiplication by n and changes εp by multiplication by (−1)n (Exercise 4.8.5), so
λ0(A,R) ∈ Z[π1X] is only well-defined up to the relations g = −g, for all g ∈ π1X.

In the setting of the INT relations, the local orientation of R comes from the orientation of
the Whitney disk that R has been tubed into, and we have (, g) = −(, g) by the HOL and
AS relations. So (, λ0(A,R)) is well-defined in T̃1.

As for 2-spheres, the second Stiefel–Whitney number ω2(R) ∈ Z2 is computed as |R ô R′|
mod 2, where R′ is a parallel copy of R. (Recall that (,ω2(R) · 1) is 2-torsion in T̃1.)

4.1.8. Independence of sheet choices:

For A : S2 £ X, let p and q be a positive and a negative transverse self-intersection of A, and
denote the preimages by A−1(p) = {, ′} ⊂ S2, and A−1(q) = {y, y′} ⊂ S2.

If p and q have common group element , then any Whitney disk W pairing p and q induces
a pairing of {, ′} with {y, y′} since each arc of ∂W runs between a sheet of A around p and
a sheet of A around q.

Framed Whitney disks exist for both of the two pairing choices ↔ y, ′ ↔ y′ and ↔
y′, ′ ↔ y if and only if 2 = 1 ∈ π1X (Exercise 4.8.6). So we need to show that for any 
such that 2 = 1, τ1(A) does not depend on these choices of preimage pairings, also called
choices of sheets ([32, Sec.4]).
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Figure 4.5. In S2: The quadrilateral r = c+ ∪ d− ∪ c− ∪ d+ bounds the 2-cell D.

Let W and V be framed Whitney disks corresponding to the two ways of pairing the preim-
ages of such a pair p and q having group element  with 2 = 1. The union of the preimages
of the Whitney disk boundary arcs A−1(∂W) ∪ A−1(∂V) is a quadrilateral r in S2 which is the
union of the two pairs of arcs c± := A−1(∂±W) and d± := A−1(∂±V) (see Figure 4.5). Since
τ1(A) does not depend on the choices of boundaries of W and V, we may arrange that r is
embedded and bounds a 2-cell D in S2 such that A restricts to an embedding on D. (For later
use we have chosen ∂V to coincide with ∂W near p and q, as indicated in Figure 4.5.)

The union A(D) ∪W ∪ V defines the image of a map R : RP2 → X representing  (Exer-
cise 4.8.7). This R contains the transverse intersections A ôW and A ô V, but R is not trans-
verse to A along A(D), and R is not smooth along ρ := A(r). We will describe a perturbation
of R to a smoothly immersed R′ : RP2 £ X transverse to A such that the perturbation creates
exactly new intersections R′ ô A which correspond to ω2(R′). Then the change in τ1(A) due
to replacing W by V will be given by (, λ0(A,R′) + ω2(R′) · 1).

The perturbation of R to R′ uses the following lemma, which will be proved below:

Lemma 4.1. There exists a push-off ρ′ of ρ such that ρ′ is normal to A and ρ′ restricts to
Whitney parallels of ∂W and ∂V.

See Remark 1.6 for an explanation of “Whitney parallel”.
Given ρ′ as in Lemma 4.1, we define R′ : RP2 £ X as follows. Extend ρ′ across W and V

to get Whitney parallels W′ and V′. Extend ρ′ generically across A(D) to get A(D)′ which is
transverse to A(D).

This defines the image W′ ∪ V′ ∪ A(D)′ of a map RP2 → X. Now smooth the corners of
W′ ∪ V′ ∪ A(D)′ near ρ′ by a perturbation supported away from A to get R′ : RP2 £ X.

We have A ô R′ = (A ôW′) ∪ (A ô V′) ∪ (A ô A(D)′).
By construction, the intersections A ôW′ are all parallel to the intersections A ôW, and the

intersections A ô V′ are all parallel to the intersections A ô V. Also A ô A(D)′ = A(D) ô A(D)′,
since A restricts to an embedding on D.

We claim that |A(D) ô A(D)′| ≡ ω2(R′) mod 2. To check this claim, we can use a smooth
perturbation of the topological R : RP2 → X above as a parallel of R′, and compute ω2(R′) =
|R ô R′| mod 2, as in section 4.1.7. Recall that R = A(D) ∪W ∪ V, and since we now are not
concerned with controlling intersections with A we can take any small perturbation near ρ to
make R smooth.

Since W and V are framed, and R′ restricts to Whitney parallels of ∂W and ∂V, we have
W ô W′ ≡ 0 ≡ V ô V′ mod 2. So the only possible contributions to |R ô R′| mod 2 come from
A(D) ô A(D)′ as claimed.

The group element associated to any point in A(D) ô A(D)′ = A ô A(D)′ ⊂ A ô R′ is 1 or , so
the change in τ1(A) due to replacing W by V is (, λ0(A,R′) + ω2(R′) · 1), since (,1) = (, )
is 2-torsion.

To show independence of sheet choice it just remains to prove Lemma 4.1.

IV–52



Course no IV— Introduction to Whitney towers

Proof of Lemma 4.1. We want to define a push-off ρ′ of ρ = ∂+W ∪ ∂−V ∪−∂−W ∪−∂+V which
is normal to A and restricts to Whitney parallels of ∂W and ∂V.

Consider the normal disk-bundle νXW|∂W which is the restriction to ∂W of the normal disk-
bundle νXW of W. Denote by A± ⊂ νXW|∂W the sheets corresponding to A with ∂−W ⊂ A− and
∂+W ⊂ A+ . Figure 4.6 shows an embedding of νXW|∂W ∼= S1×D2 into 3-space, as in Figure 1.6.

At p and at q, the two sheets A± split each of νXW|∂W(q) and νXW|∂W(p) into four quad-
rants. We define a preferred quadrant at p and at q as follows. The orientation of A induces
orientations of the A± , which in turn induce orientations of ∂A− and ∂A+ via the usual con-
vention. At the positive self-intersection p the preferred quadrant is bounded by the vectors
−−→
∂A+ and

−−→
∂A− , and at the negative self-intersection q the preferred quadrant is bounded by

the vectors −
−−→
∂A+ and −

−−→
∂A− .

Define ρ′(p) and ρ′(q) by choosing a vector in each of these preferred quadrants (see left
of Figure 4.6).

Extend ρ′(p) and ρ′(q) to a section ρ′(∂W) of νXW|∂W over ∂W such that ρ′(∂W) is normal
to both sheets of A along ∂W, as in the right of Figure 4.6. Note that this section exists by our
choices of preferred quadrants.

A

A

q p

ρ'(p)ρ'(q)

q p

A

A

Figure 4.6. In νXW|∂W: On the left, ρ′(q) and ρ′(p) in the preferred quadrants,
and on the right, extended to a red Whitney section ρ′(∂W) which is normal
to A. The blue ‘standard’ Whitney section ∂W is shown as a reference with
Figure 1.6.

To define ρ′ over ∂V, note that we may assume that V = W near both p and q (Exer-
cise 4.8.8), so νXV|∂V coincides with νXW|∂W near p and q. This means that the preferred
quadrants also coincide, and the previously defined ρ′(p) and ρ′(q) can be extended along
∂V to a section ρ′(∂V) which is normal to the sheets of A.

So along ρ = ∂+W ∪ ∂−V ∪ −∂−W ∪ −∂+V we have the push-off ρ′ assembled from the
push-offs along the given oriented subintervals starting at ρ(q): The section ρ′(∂+W) ending
at ρ′(p) which is the restriction to ∂+W of ρ′(∂W), followed by the section ρ′(∂−V) which is
the restriction to ∂−V of ρ′(∂V) running from ρ′(p) back to ρ′(q), followed by the section
ρ′(−∂−W) which is the restriction to ∂−W of ρ′(∂W) but running from ρ′(q) back to ρ′(p),
followed by the section ρ′(−∂+V) which is the restriction to ∂+V of ρ′(∂V) but running from
ρ′(p) back to ρ′(q). �

We have so far shown that τ1(A) ∈ eT1/ INT(A) is independent of the choice of order 1 framed
Whitney tower for a fixed immersion A.
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4.1.9. Invariance of τ1(A) under homotopies of A

It suffices to check invariance under regular homopy by [25, Thm.1.2]. Suppose that τ0(A)
vanishes, and A is regularly homotopic to A′. By the homotopy invariance of τ0 it follows
that A′ also supports an order 1 framed Whitney tower. Recall that up to isotopy, any generic
regular homotopy from A to A′ can be realized as a sequence of finitely many finger moves
followed by finitely many Whitney moves.

An isotopy from A to A′ extends to any Whitney tower W on A to yield a Whitney tower W ′

on A′ with identical intersection forests t(W) = t(W ′), so τ1 is invariant under isotopy.
Since any Whitney move has a finger move as an “inverse”, there exists A′′ which differs

from each of A and A′ by only finger moves (up to isotopy). Since a finger move is supported
near an arc, it can be made disjoint from the Whitney disks in any pre-existing Whitney tower
by a small isotopy, and the pair of intersections created by a finger move admit a local clean
Whitney disk disjoint from any other Whitney disks. So any Whitney tower on A or A′ gives
rise to a Whitney tower on A′′ yielding τ1(A) = τ1(A′′) = τ1(A′), since τ1 does not depend on
the choice of Whitney tower on A′′. Here we are also using that INT(A) = INT(A′) = INT(A′′),
since A, A′ and A′′ are all homotopic.

4.2. τ1(A) vanishes if and only if A supports an order 2 framed Whitney
tower

Here we show the equivalence of statements (i) and (ii) in Theorem 3.4.
If A supports an order 2 framed Whitney tower V, then τ1(A) vanishes since V is also an

order 1 framed Whitney tower, and V contains no unpaired order 1 intersections.
So assume that τ1(A) vanishes, and let W be an order 1 framed Whitney tower on A. The

vanishing of τ1(A) = [t(W)] ∈ fT1/ INT means that the intersection forest t(W) =
∑

εp · tp lies
in the span of the AS, HOL, FR and INT relators. Here we are considering t(W) as a word in
the span of decorated order 1 trees.

The construction of an order 2 framed Whitney tower on A will involve two main steps:
First, geometric realizations of the relators will be used to modify W so that t(W) consists of
pairs ±tp of oppositely-signed isomorphic trees corresponding to algebraically canceling pairs
of intersections. Then, further controlled modifications of W will convert these algebraically
canceling pairs into geometrically canceling pairs of intersections admitting Whitney disks.
The issue here is that an algebraically canceling pair of intersections may lie in different
Whitney disks (Figure 4.7), so achieving geometric cancellation will require “transferring”
intersections from one Whitney disk to another.

In the following W will not be renamed as controlled modifications are made.

4.2.1.

Towards algebraic cancellation: Perform a finger move on A guided by a circle represent-
ing any  ∈ π1X, and then tube the resulting clean local framed Whitney disk into a 2-sphere
S. The resulting Whitney disk W has twisting ω(W) ≡ ω2(S) mod 2. If ω2(S) = 0, then after
performing some interior twists on W it can be arranged that ω(W) = 0 ∈ Z. If ω2(S) = 1, then
after performing one boundary-twist and some interior twists on W it can be arranged that
ω(W) = 0 ∈ Z. So after recovering the framing on W it follows that [t(W)] ∈ fT1 is changed
exactly by adding the INT relator (, λ0(A, S) + ω2(S) · 1).

In the case where 2 = 1, a similar but more complicated procedure changes [t(W)] ∈ fT1
exactly by adding (, λ0(A,R) + ω2(R) ·1), where R : RP2 £ X represents . This will be shown
below in Lemma 4.2.

By realizing INT relations in these ways we can arrange that t(W) lies in the span of AS,
HOL and FR relators. To realize any FR relator (1, ) + (, ) perform a finger move guided
by a circle representing  to get a clean local framed Whitney disk W. Then performing two
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opposite boundary twists around each boundary arc of W changes t(W) exactly by (1, ) +
(, ).

So by realizing INT and FR relators we can arrange that t(W) lies in the span of AS and HOL
relators. By re-choosing whiskers on the trivalent vertices of trees to realize HOL relations we
can further arrange that t(W) lies in the span of AS relators.

At this point it is convenient to split W so that each Whitney disk in W contains exactly
one interior intersection with A. This splitting is accomplished by finger moves guided by
arcs in the Whitney disks running from one boundary arc to the other, and is the easiest
case of Lemma 4.3 (see also Figure 1.10). Now any tree (, b) ∈ t(W) can be changed to
−(, b) ∈ t(W) simply by re-choosing the orientation of the corresponding Whitney disk.

As a result of these constructions we can assume that now the un-paired intersections in
W consist of algebraically canceling pairs.

A

A

W W'
p q

a
a

b b
11

Figure 4.7

4.2.2.

Towards geometric cancellation: Consider an algebraically canceling pair of intersections
p = A ôW and q = A ôW′, with ε · tp = (, b) and ε · tq = −(, b), where the b-decorated edge
changes sheets at p and q respectively. See Figure 4.7, where the short dashed sub-arcs
indicate where sheets extend outside the 4-ball shown in the figure.

We will describe a controlled modification of W that “transfers” p over to W′ so that p and q
admit a framed order 2 Whitney disk. This “transfer move” will not create any new unpaired
order 1 intersections, and can be iteratively applied to convert all algebraically canceling
pairs into geometrically canceling pairs, yielding the desired order 2 framed Whitney tower
on A. Description of this modification will be accompanied by Figures 4.7 through Figure 4.11,
with some details left to the exercises.

The transfer move starts by pushing p off of W by a finger move into A as shown in
Figure 4.8. This finger move is guided by an arc in W along the b-labeled and 1-labeled
edges of tp from p to ∂+W.

The next step in the transfer move is to push one of the self-intersections of A created
by the first finger move across ∂+W′ by a finger move as in Figure 4.9. This finger move is
guided by an arc in A from ∂+W to ∂+W′, and creates a new order 1 intersection p′ ∈ A ôW′.
(The 4-ball shown in Figures 4.7–4.11 is a neighborhood of the union of this guiding arc with
W and W′.) We may ensure that p′ has the same sign as p did by choosing this guiding
arc to approach from the correct side of ∂+W′ in A (Exercise 4.8.9), and in fact tp′ = tp by
Exercise 4.8.10. As illustrated by the blue Whitney circle in Figure 4.10, p′ and q admit an
order 2 framed Whitney disk by Exercise 4.8.11.

The construction has also created order 1 intersections r, s ∈ A ô A which admit a framed
embedded Whitney disk V, appearing “underneath” the horizontal sheet in Figure 4.11. This
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A

A

W W'
q

Figure 4.8

A

A

W W'
q

p'

Figure 4.9

A

A

W W'
q

p'

r s

Figure 4.10

V has a pair of oppositely-signed intersections with A that admit a framed order 2 Whitney
disk whose boundary is indicated in blue in the figure (Exercise 4.8.12).

To see that this transfer move can be iterated to convert all algebraically canceling pairs
of intersections into geometrically canceling pairs, observe that disjointly embedded guiding
arcs in A can be found for all pairs of Whitney disks, and the new order 1 V-Whitney disks are
supported near these arcs and the original Whitney disks’ boundaries. The order 2 Whitney
disks created in the construction do not need to be controlled since they can only create new
intersections of order ≥ 2.
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A

A

W W'
q

p'
r s

VV

Figure 4.11

To complete the proof that the vanishing of τ1(A) implies that A supports an order 2 framed
Whitney tower it just remains to prove the following lemma describing the realization of INT
relations for RP2s, which was used to achieve all algebraically canceling pairs:

Lemma 4.2. Let W be an order 1 framed Whitney tower on A, and let R : RP2 £ X represent
 ∈ π1X with 2 = 1. Then, after one finger move, A supports an order 1 framed Whitney
tower W ′ such that [t(W ′)] = [t(W) + (, λ0(A,R) + ω2(R))] ∈ fT1.

Proof. Perform a finger move on A guided by a circle which is isotopic to R(RP1) representing
. We may assume that this circle is disjoint from all Whitney disks in W. The new pair of self-
intersections created by this finger move admit a clean local framed Whitney disk W whose
boundary is indicated in green in Figure 4.12.

a

Figure 4.12. After the finger move: A neighborhood of the circle representing
. The thick arrow indicates where the circle extends outside the illustrated
local coordinates.

Figure 4.13 shows the preimages in red of a different choice of Whitney arcs that induce
the opposite sheet choice as W. (Compare with Figure 4.5, but note that here preimages of
the same point are aligned vertically, as opposed to diagonally in Figure 4.5.)

Decomposing RP2 as the union Mb∪∂Mb=∂D2 D
2 of a Möbius band neighborhood Mb around

RP1 and a disk D2, we want to use R(D2) as a Whitney disk W′ whose boundary is the image
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xy

x'y'

Figure 4.13

of the red arcs (see Figure 4.14). To do this first observe that we can assume that R restricts
to an embedding on Mb. Now extend an isotopy between R(RP1) and the finger move circle
to a homotopy of R(RP2) which restricts to an isotopy of R(Mb). To use the R(D2) as W′

we just need the image of the red arcs to align with ∂R(Mb). This can be accomplished by
appropriately choosing the twisting of A in S1 × B3 along the finger move circle, which is the
core of R(Mb).

By general position we may assume that A∩R(RP2) ⊂ R(D2), so A ôW′ = A ô R(RP2). After
arranging that ω(W′) = 0 by boundary-twists, if needed, it follows that changing W to W ′ by
replacing W by W′ yields the change [t(W ′)] = [t(W) + (, λ0(A,R) + ω2(R))] ∈ fT1. Here the
(,ω2(R)) term comes from boundary-twisting (and interior-twisting) as needed to make W′

framed (as in section 4.2.1, any interior twists contribute trivially in fT1). �

a

Figure 4.14. The image under A of the red arcs in Figure 4.13. Solid arcs are
in the present, dotted arcs are in the future, and dashed arcs are in the past.

4.3. Splitting twisted Whitney towers

A framed Whitney tower is split if the set of singularities in the interior of any Whitney disk
consists of either a single point, or a single boundary arc of a Whitney disk, or is empty. This
can always be arranged, as observed in Lemma 13 of [30] (Lemma 3.5 of [26]), by performing
finger moves along Whitney disks guided by arcs connecting the Whitney disk boundary arcs
(see Figure 1.10). Implicit in this construction is that the finger moves preserve the Whitney
disk twistings (by not twisting relative to the Whitney disk that is being split – see Figure 4.15).
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+1 -1

Figure 4.15. A neighborhood of a twisted finger move which splits a Whitney
disk into two Whitney disks. The vertical black arcs are slices of the new Whit-
ney disks, and the grey arcs are slices of extensions of the Whitney sections.
The finger-move is supported in a neighborhood of an arc in the original Whit-
ney disk running from a point in the Whitney disk boundary on the “upper”
surface sheet to a point in the Whitney disk boundary on the “lower” surface
sheet. (Before the finger-move this guiding arc would have been visible in the
middle picture as a vertical black arc-slice of the original Whitney disk.)

A Whitney disk W is clean if the interior of W is embedded and disjoint from the rest of the
Whitney tower. In the setting of twisted Whitney towers, it simplifies the combinatorics of
controlled manipulations to use “twisted” finger moves to similarly split twisted Whitney
disks into ±1-twisted clean Whitney disks.

We call a twisted Whitney tower split if all of its non-trivially twisted Whitney disks are
clean and have twisting ±1, and all of its framed Whitney disks are split in the usual sense
(as for framed Whitney towers).

Recall from section 1.10 our convention of embedding into a Whitney tower the trees
associated to unpaired intersections and Whitney disks.

Lemma 4.3 ([8, 30]). If A supports an order n twisted Whitney tower W, then A is homotopic
(rel ∂) to A′ which supports a split order n twisted Whitney tower W ′, such that:

(i) The sub-multiset of signed framed trees
∑

p εp · tp ⊂ t(W) is isomorphic to the sub-
multiset of signed framed trees

∑

p′ εp′ · tp′ ⊂ t(W ′).

(ii) Each ω(WJ) · J in t(W) gives rise to exactly |ω(WJ)|-many ±1 · J in t(W ′), where each
twisting coefficient ±1 of the J in t(W ′) has the same sign as the twisting ω(WJ) of
the original WJ ⊂ W.

Proof. Illustrated in Figure 4.15 is a local picture of a twisted finger move, which splits one
Whitney disk into two, while also changing twistings. If the original Whitney disk in Figure 4.15
was framed, then the two new Whitney disks will have twistings +1 and −1, respectively. In
general, if the arc guiding the finger move splits the twisting of the original Whitney disk
into ω1 and ω2 zeros of the extended Whitney section, then the two new Whitney disks
will have twistings ω1 + 1 and ω2 − 1, respectively. Thus, by repeatedly splitting off framed
corners into ±1-twisted Whitney disks, any ω-twisted Whitney disk (ω ∈ Z) can be split into
|ω|-many +1-twisted or −1-twisted clean Whitney disks, together with split framed Whitney
disks containing any interior intersections in the original twisted Whitney disk. Combining this
with the untwisted splitting [30, Lem.13] of the framed Whitney disks illustrated in Figure 1.10
gives the result. �
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4.4. The Whitney move IHX relation

Suppose that W is a split Whitney tower on A. Let p be an unpaired intersection with tp ⊂ W.
Define the split subtower Wp ⊂ W to be the union of the Whitney disks containing the trivalent
vertices of tp together with sheets of A around the boundary arcs of each of these Whitney
disks whose boundary lies in a sheet of A. These sheets inherit the indices of the order 0
surfaces containing them, so the univalent labels of tp are unchanged. By construction each
Whitney disk in Wp is framed and embedded.

W(I,J)

W((I,J),K)

I J

KL

I J

KL

I J

KL

(I,(J,K))W W(J,K)
(J,(I,K))W W(I,K)

Figure 4.16. The framed Whitney move IHX relation replaces a split subtower
whose signed tree looks locally like the one on the left with a pair of nearby
disjoint split subtowers whose signed trees look locally like the trees on the
right.

Lemma 4.4 (Whitney move IHX relation). Let Wp be a split subtower in a split Whitney
tower W, and let W((,J),K) be a Whitney disk in Wp so that tp looks locally like the leftmost
tree in Figure 4.16 near W((,J),K). Then W can be modified in a regular neighborhood ν(Wp)
of Wp yielding a split Whitney tower on the same order 0 surface sheets, with Wp replaced
by disjoint split subtowers Wp′ and Wp′′ contained in ν(Wp) such that the signed trees tp′
and tp′′ are as pictured on the right hand side of Figure 4.16.

WI

WJ

WK

WI

WJ

WK

W((I,J),K)

W(I,K)

W(I,K)'

Figure 4.17. The Whitney move IHX construction starts with a W(,J) Whitney
move on W . Note that the intersection p =W((,J),K) ôWL is not shown in this
figure (and is suppressed in subsequent figures as well).
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( J , K )

W' W
(I,K) (I,K)

WJ

WI

WK

W' W
(I,K) (I,K)

WJ

WI

WK

W(J,(I,K))

W(I,(J,K))

Figure 4.18. The intersection point WJ∩W′(,K) is ‘transferred’ via a finger move
(top) to create a canceling pair WJ∩W(,K) paired by W(J,(,K)) at the cost of also
creating WJ ∩WK paired by W(J,K) and W ∩W(J,K) paired by W(,(J,K)) (bottom).

Proof. As a preliminary step, observe that the labelling of the trivalent vertices in the left-
hand tree in Figure 4.16 indicates that the unpaired intersection p ∈ Wp corresponds to an
edge in the L-subtree. By applying the move of Figure 1.18 in section 1.20 we may assume
that in fact p = W((,J),K) ô WL, so that the edge corresponding to p is the L-labeled edge in
the lefthand tree. This will simplify later steps in the construction. For visual clarity p will be
suppressed from view in the figures.

Now do the W(,J) Whitney move on W (see Figure 4.17). This eliminates the canceling pair
of intersections between W and WJ at the cost of creating two canceling pairs of intersections
between W and WK which we pair by Whitney disks W(,K) and W′(,K) which are meridional
disks to WJ as illustrated in Figure 4.17.

The new Whitney disks W(,K) and W′(,K) each have a single interior intersection with WJ

and the next step is to “transfer” (as illustrated in the upper part of Figure 4.18) the inter-
section point WJ ∩W′(,K) to create a canceling pair WJ ∩W(,K) paired by W(J,(,K)) at the cost
of also creating WJ ∩WK paired by W(J,K) and W ∩W(J,K) paired by W(,(J,K)) (as illustrated in
the lower part of Figure 4.18). Note that Figure 4.18 differs from Figure 4.17 by a change of
coordinates which brings the sheet of WK into the “present” slice of 3–space.

This transfer move is combinatorially the same as in section 4.2.2 but here applied to
higher-order sheets. The important thing to note here is that the finger move is guided by an
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W' W
(I,K) (I,K)

WJ

WI

WK

WJ

WI

WK

W'(I,K) W(I,K)

W((I,J),K)

a

a

Figure 4.19. The transferring finger move is guided by an arc  (shown in
green) which can be taken to run along what used to be the part of the
boundary arc of W((,J),K) lying in WK . The bottom picture is the same as the
top picture but indicating where W((,J),K) used to be.

arc  (see Figure 4.19) from ∂W′(,K) to ∂W(,K) in WK and we can take this arc to run along what
used to be the part of ∂W((,J),K) lying in WK . This is illustrated in the lower part of Figure 4.19
which gives a better picture of the situation before the finger move is applied. The Whitney
disks W(,(J,K)) and W(J,(,K)) are taken to be parallel copies of the old W((,J),K) as follows: The
boundary of W(,(J,K)) (resp. W(J,(,K))) consists of arcs ′ and b′ (resp. ′′ and b′′), where ′

and ′′ are tangential push-offs of  in WK and b′ and b′′ are normal push-offs of what was
the boundary arc b of W((,J),K) in W(,J). This is shown in both Figure 4.20 and Figure 4.21,
where again it is easier to picture things before the transferring finger move. Since W((,J),K)
was framed and embedded, W(,(J,K)) and W(J,(,K)) can be formed from two disjoint parallel
copies of W((,J),K) which each intersect WL in a single point as W((,J),K) did.

Thus exactly two new unpaired intersection points p′ and p′′ have been created (near
where p was) with corresponding trees t(p′) and t(p′′) as shown locally in the right hand
side of Figure 4.16. After the transferring finger move, the W′(,K) Whitney move can be done
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a'
a''

b'

b''
WJ

WI

WK

W'(I,K) W(I,K)

W((I,J),K)

Figure 4.20. Before the transfer move: New Whitney disks W(,(J,K)) and
W(J,(,K)), whose boundaries are the unions of arcs ′ ∪ b′ and ′′ ∪ b′′ (see
also Figure 4.21), will be created from parallel copies of the old W((,J),K).

b ' '

b '

a '

a ' '

WI

WJ

WK

WI

WJ

WK

b
b'' b'

a'

a''

Figure 4.21. Applying the transfer move to the right-hand side will create
new Whitney disks W(,(J,K)) and W(J,(,K)), whose boundaries are the unions of
arcs ′ ∪ b′ and ′′ ∪ b′′ (see also Figure 4.20), from parallel copies of the old
W((,J),K) shown on the left.

(on either sheet) without affecting anything else. Finally, W , WJ and WK will need to be split
since they now each contain two boundary arcs of Whitney disks. Splitting W , WJ and WK

down into the lower order Whitney disks (as in Figure 1.10 and Lemma 4.3(i)) yields the two
split subtowers Wp′ and Wp′′ . �

4.5. The Whitney move twisted IHX relation

Recall the twisted IHX/Jacobi relation in the even order twisted tree groups (section 2.1):

I = H + X − 〈H,X〉

where I, H and X denote rooted trees which correspond to the three terms of a Jacobi identity,
i.e. they differ locally as in Figure 4.16, where we now are interpreting the trees in the figure
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as being rooted trees with each of the L-subtrees containing a root univalent vertex. Here we
are using Roman font in the twisted IHX relation rather than the italic font used in section 2.1
to clarify the distinction between the lefthand term “I” of the Jacobi identity and the subtree
“” in each of the three terms in Figure 4.16.

We will modify the proof of the above Whitney move IHX relation (Lemma 4.4) to show how
to locally replace a twisted Whitney disk whose associated signed -tree is I by two twisted
Whitney disks whose associated signed -trees are H and X , respectively, together with a
single unpaired intersection p having signed tree −〈H,X〉.

Suppose that W is a split Whitney tower on A. Let W be a Whitney disk in W with rooted
tree J ⊂ W. Then the split subtower WW ⊂ W is defined to be the union of the Whitney disks
containing the trivalent vertices of J together with sheets of A around the boundary arcs of
each of these Whitney disks whose boundary lies in a sheet of A. Note that W ⊂ WW. If W is
twisted, then by construction all the other Whitney disks in WW are framed and the twisting
of W is ±1 by the definition of a split Whitney tower, and WJ contains the -labeled root
vertex of J ⊂ WW.

Lemma 4.5. Let WW be a split subtower for an ε-twisted Whitney disk W in a split Whitney
tower W, with the -tree I associated to W looking locally like the leftmost tree in Figure 4.16
(with the L-subtree containing a root univalent vertex), and denote by H and X the -trees
which only differ locally from I as in the first two trees in the right side of the equation in
Figure 4.16.

Then W can be modified in a regular neighborhood ν(WW) of WW yielding a split Whitney
tower on the same order 0 surfaces, with WW replaced by disjoint split subtowers WW′ , WW′′

and Wp contained in ν(WW) such that:

(i) W′ is an ε-twisted Whitney disk with associated -tree H , and

(ii) W′′ is an ε-twisted Whitney disk with associated -tree X , and

(iii) the unpaired intersection p has sign −ε and associated tree 〈H,X〉.

Proof. We first consider the case where the L-labeled subtree is order zero, which means that
L is just the -label, and the upper trivalent vertex of the I -tree in Figure 4.16 corresponds
to the clean ε-twisted W((,J),K), with -tree I = ((, J), K) . Then the construction in the proof
of Lemma 4.4, which starts by performing a Whitney move on the framed Whitney disk W(,J)
corresponding to the lower trivalent vertex of the I-tree, exchanges W((,J),K) for two Whitney-
parallel Whitney disks W(,(J,K)) and W(J,(,K)) (Figures 4.20 and 4.21). In our current setting
these two new Whitney disks W′ and W′′ inherit the ε-twisting of W, and have associated
twisted trees H and X . And because of the twisting ε = ±1, there is now a single new
intersection p =W′ ∩W′′. In the construction of Lemma 4.4 W′ inherits the orientation of W,
and W′′ inherits the opposite orientation, but in our current setting the signs of the twisted
trees associated to W and W′′ are given by their twisting ε = ω(W′) = ω(W′′) which does not
depend on orientations. So we are free to choose orientations on W′ and W′′ so that the sign
of p is −ε. Finally, splitting yields the desired split subtowers WW′ , WW′′ and Wp.

Now we consider the case where the L-labeled subtree has positive order. This means
that the Whitney disk W((,J),K) is framed and contains a boundary arc of some higher-order
Whitney disk V corresponding to a trivalent vertex of L which is adjacent to the trivalent
vertex for W((,J),K) in the I tree. As above, the construction of Lemma 4.4 exchanges W((,J),K)
for two parallel Whitney disks W(,(J,K)) and W(J,(,K)), but now these three Whitney disks are
all framed. The pair of intersections between W((,J),K) and some sheet WL1 that was paired
by V gives rise to two pairs of intersections WL1 ô W(,(J,K)) and WL1 ô W(J,(,K)). To continue
with the construction we need to find Whitney disks for these new intersection pairs. This will
be accomplished using parallels of V, and we state this as a lemma for future reference:
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Lemma 4.6. Let V be an embedded Whitney disk for a pair of intersections between em-
bedded sheets A and B, and let A′ and A′′ be pairwise disjoint parallel copies of A.

(i) If V is framed, then there exist pairwise disjointly embedded framed Whitney disks
V′ pairing A′ ô B, and V′′ pairing A′′ ô B, which are parallel to V.

(ii) If V is ε-twisted (ε = ±1), then there exist embedded ε-twisted Whitney disks V′

pairing A′ ô B, and V′′ pairing A′′ ô B, which are parallel to V, such that V′ ô V′′ is a
single point.

V
A

V'
A'

V''
A''

B B B
Figure 4.22. A neighborhood of the framed embedded Whitney disk V pairing
sheets A and B contains (in nearby time-slices) parallel Whitney disks V′ and
V′′ pairing the intersections between B and parallels A′ and A′′ of A. Each of
V′ and V′′ has one boundary arc which is tangent to a boundary arc of V, and
the other boundary arc normal to the boundary arc of V in A. Only B extends
into all time-slices; the three Whitney disks and other three sheets are each
contained in single time slices.

Proof. Figure 4.22 shows the construction of V′ and V′′ which are Whitney-parallel to V in the
case that V is framed. If V is (±1)-twisted, then Figure 4.22 is only accurate near the Whitney
disk boundaries, but since V′ and V′′ are Whitney parallel it follows that V′ and V′′ intersect
in a single point since they inherit the (±1)-twisting of V. �

Returning to the twisted IHX construction, and simplifying notation by writing A =W((,J),K),
and B =WL1 , and A′ =W(,(J,K)), and A′′ =W(J,(,K)), Lemma 4.6 gives us V′ pairing A′ ô B, and
V′′ pairing A′′ ô B.

If V was the ε-twisted W, then we take W′ = V′, W′′ = V′′, and p =W′ ôW′′. Splitting then
yields the desired split subtowers WW′ , WW′′ and Wp.

If V was not the ε-twisted W, then V intersected some sheet WL2 in a pair of intersections
paired by some Whitney disk V2, and hence the parallels V′ and V′′ also each intersect WL2
in a pair of intersections. Again applying Lemma 4.6 (but now with A := V2 and B := WL2),
yields V′2 and V′′2 pairing V′ ôWL2 and V′′ ôWL2 , with V′2 and V′′2 inheriting the twisting or the
intersections that V2 had.

We continue to apply Lemma 4.6 in this way as needed until reaching the ε-twisted W = Vn,
which gives rise to W′ = V′n, W′′ = V′′n and p =W′ ôW′′. Splitting then yields the desired split
subtowers WW′ , WW′′ and Wp. �

4.6. Outline of twisted order-raising obstruction theory proof

Recall from sections 2.1, 2.2 and 2.3 the statement of Theorem 2.5: A link L ⊂ S3 bounds an
order n twisted W ⊂ B4 with τn (W) = 0 ∈ Tn if and only if L bounds an order n + 1 twisted
Whitney tower.

Theorem 2.5 is essential to the classification of order n twisted Whitney towers in the 4-
ball discussed in Section 2, and this section gives a brief outline of the proof, as given in [8,
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Thm.1.9]. This proof, which depends on the above Whitney move IHX Lemmas 4.4 and 4.5,
generalizes part of the construction of an order 2 framed Whitney tower in section 4.2.

The “if” direction of the theorem holds since by definition any order n+ 1 twisted Whitney
tower is also an order n twisted Whitney tower with no unpaired order n intersections or or-
der n/2 twisted Whitney disks. For the “only if” direction, we will sketch how the realization
of the relations in Tn by geometric constructions can be used to arrange that all unpaired
intersections and twisted Whitney disks occur in “algebraically canceling” pairs (representing
inverse elements in Tn ), which can then be exchanged for “geometrically canceling” inter-
section pairs (admitting Whitney disks) and framed Whitney disks of order n/2. The strategy
is analogous to the order 2 construction in section 4.2, but now we are dealing with twisted
Whitney disks and higher-order intersections, and hence more complicated trees (although
here in B4 we do not have to keep track of edge decorations and INT relations).

We can assume that W is split (Lemma 4.3), and that t(W) contains no framed trees of
order > n, and no twisted trees of order > n/2 (Exercise 2.13.1).

The condition τn (W) = 0 ∈ Tn means that in the free abelian group on order n framed
trees and order n/2 twisted trees t(W) lies in the span of the relators in section 2.1 which
define Tn . As usual we consider the trees t(W) to be embedded in W.

As described in [8, Sec.4.1], using also [30, Sec.4] and [7], there are three main steps to
constructing an order n + 1 twisted Whitney tower from W:

First, controlled modifications of W realizing the relators, as discussed in section 2.2, are
used to arrange that the order n trees and order n/2 -trees in t(W) all occur in isomorphic
oppositely-signed algebraically canceling pairs (see the start of section 4 of [8]).

Secondly, using the above Whitney move IHX Lemmas 4.4 and 4.5, all these paired trees
are converted into pairs of “simple” (right- or left-normed) trees by IHX constructions. These
simple trees are characterized by the property that every trivalent vertex is adjacent to a
univalent vertex. This corresponds to every Whitney disk having a boundary arc on an order
zero disk. (The reason for this step will be explained momentarily in the description of the
third step.) After this step all the trees still occur in algebraically canceling pairs.

The final third step uses an iterated higher-order variation of the “transfer move” used in
section 4.2.2 to achieve geometric cancellation for algebraically canceling order 1 pairs. This
step is described in detail for algebraically canceling pairs of framed trees in [30, Lem.15],
and for twisted order n/2 Whitney disks in [8, Sec.4.1], and requires that all pairs are simple,
as arranged in the second step. The reason for this requirement has to do with the connec-
tivity of sheets that is needed for the transfer move. This can be seen by observing that the
construction of the two order 2 Whitney disks in Figure 4.11 depends on all three sheets of A
being connected. In higher orders it turns out that having just two of these sheets connected
suffices to iterate the move finitely many times until eventually terminating with the desired
result, provided one starts at an “end” of a simple tree.

After this third step the new layer of order n+ 1 Whitney disks have uncontrolled intersec-
tions, but all of these new intersections are of order ≥ n+ 1. And the construction combining
the twisted Whitney disk pairs into framed Whitney disks (Figures 21–22 in [8, Sec.4.1]) cre-
ates only new twisted Whitney disks of order > n/2, which are supported near the original
twisted Whitney disk pairs, along with intersections of order ≥ n among these new twisted
Whitney disks. Hence an order n + 1 twisted Whitney tower has been created.

Analogous order-raising intersection-obstruction theories are described in [8, Sec.4.4] for
order n framed Whitney towers, in [30, Thm.6] for non-repeating Whitney towers, and in [12,
Thm.6.17] for “k-repeating” Whitney towers.
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4.7. Whitney disk orientations and the AS relation

This section explains why the signs associated to trees for unpaired intersections in a Whitney
tower only depend on the orientations of the underlying order 0 surface and the ambient 4-
manifold modulo the AS antisymmetry relations.

Let W be a Whitney tower in an oriented 4-manifold X. The order 0 surface supporting
W comes with a fixed orientation, and arbitrary orientations on the Whitney disks in W are
chosen and fixed. Fix a choice of either the positive or negative corner convention described
in section 1.19. Here we will refer to this fixed convention choice as “our corner convention”.

For p ∈ W ô WJ an unpaired intersection between Whitney disks W and WJ in W, the
corresponding tree tp = 〈, J〉 from section 1.10 is embedded in W in a way that satisfies our
corner convention, and the orientations of the trivalent vertices of tp are taken to be induced
by the Whitney disk orientations.

We will consider here the effect on the signed oriented tree εp · tp of switching the fixed
orientation choice on any of the Whitney disks corresponding to the trivalent vertices of tp.
The conclusion will be that any such orientation switch corresponds to an AS relation (Fig-
ure 2.1), so that modulo AS relations εp · tp only depends on the orientation of the underlying
order 0 surface.

First of all, the sign εp = ±1 is determined by comparing the concatenated orientations
of W and WJ with the orientation of X at p. So in the case that W 6= WJ, then switching the
orientation of one of either W or WJ will switch the trivalent orientation of the corresponding
trivalent vertex of tp, and will switch the sign εp, meaning that εp · tp is changed by an AS
relation.

In the case that W =WJ, then switching the orientation of W =WJ will switch the trivalent
orientation of tp at both of the trivalent vertices adjacent to the edge passing through p, and
will not change the sign εp, meaning that εp · tp is changed by two AS relations.

Now consider the effect of switching the orientation on a Whitney disk WK1 other than W

or WJ, so that WK1 contains a boundary arc of a higher-order Whitney disk W(K1,K2) which
pairs intersections q and r between WK1 and some WK2 , as in the left side of Figure 4.23.

The orientation switch on WK1 changes the cyclic orientation at the trivalent vertex in WK1 ,
and it also switches the signs of q and r. This switching of the signs of q and r means that the
embedding of tp needs to changed near the trivalent vertex  of W(K1,K2) in order to preserve
our corner convention. The effect of this convention-preserving change in the embedding of
tp near  is to switch the cyclic orientation of tp at  as shown in the right side of Figure 4.23.
Note that the orientation of the Whitney disk W(K1,K2) does not change.

WK1

WK2

K2K1,(         )W

WK1

WK2

K2K1,(         )W

q r rq

v v

Figure 4.23. Before (left) and after (right) the orientation switch on WK1 , using
the positive corner convention. Any interior intersection(s) in W(K1,K2) are not
shown.
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Since the orientation of W(K1,K2) is not changed, the sign εp of p ∈W ôWK is unchanged.
(It is possible that W(K1,K2) = W or W(K1,K2) = WJ.) So the result of switching the orientation
of any one WK1 (with WK1 6= W , and WK1 6= WJ) while preserving our corner convention is
the same as applying two AS relations to tp, one at the trivalent vertex in WK1 , and one at
 ∈W(K1,K2).

4.8. Section 4 Exercises

4.8.1. Exercise

In the proof of independence of τ1(A) on Whitney disk interiors given in section 4.1.4 show
that the sphere S = (W \) ∪ (V′ \ ′) is homotopic to S′ =W ∪ V′ by a homotopy supported
near γ. HINT: Consider a homotopy from S′ to S which pulls the common collars  = ′

slightly apart while perturbing S′ to be smooth, and then shrinks the union of the collars
away from γ.

4.8.2. Exercise

Check that the signed tree tp associated to p ∈ ∂εW ∩ ∂δV in Equation (4.1) near Figure 4.1 is
well-defined, including the case that W = V.

4.8.3. Exercise

Check that in each of the other cases of Figure 4.3 pushing ∂δW into ∂εV across the ± self-
intersection of A paired by V creates an algebraically canceling pair of signed trees.

4.8.4. Exercise

In the setting of section 4.1.6 and Figure 4.4, check that the order 1 decorated trees corre-
sponding to the intersections A ô V′ cancel with those corresponding to the oppositely-signed
parallel copy of V′ in V.

4.8.5. Exercise

In the discussion in section 4.1.7 of the pairing λ0(A,R) for A : S2 £ X and R : RP2 £ X
with the generator of π1RP2 mapping to  ∈ π1X, show that changing the choice of sheet-
changing path through p ∈ A ô R changes gp by right multiplication by n and changes εp by
multiplication by (−1)n for some integer n.

4.8.6. Exercise

From section 4.1.8: For A : S2 £ X, let p and q be a positive and a negative transverse self-
intersection of A, and denote the preimages by A−1(p) = {, ′} ⊂ S2, and A−1(q) = {y, y′} ⊂
S2.

If p and q have common group element gp =  = gq, then any Whitney disk W pairing p
and q induces a pairing of {, ′} with {y, y′} since each arc of ∂W runs between a sheet of
A around p and a sheet of A around q.

Check that Whitney disks exist for both of the two pairing choices  ↔ y, ′ ↔ y′ and
↔ y′, ′↔ y if and only if 2 = 1 ∈ π1X.

4.8.7. Exercise

From section 4.1.8 and Figure 4.5: Check that the union A(D) ∪W ∪ V defines the image of a
map R : RP2 → X which sends the generator of π1RP2 to  ∈ π1X.
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4.8.8. Exercise

Let W and V be Whitney disks pairing the same intersections p and q between surfaces in a 4-
manifold, and suppose that ∂W = ∂V near p and near q. Convince yourself that by an isotopy
it can be arranged that W = V near p and near q without creating any new intersections.

4.8.9. Exercise

Check that in the setting of Figures 4.7, 4.8 and 4.9 it can be arranged that p′ has the same
sign as p.

4.8.10. Exercise

Check that in the setting of Figures 4.7, 4.8 and 4.9 it can be arranged that p′ has the same
decorated tree as p.

4.8.11. Exercise

Use the previous two exercises to check that p′ and q in Figure 4.10 admit an order 2 Whitney
disk.

4.8.12. Exercise

Continuing the previous three exercises, the construction of subsection 4.2.2 has also cre-
ated order 1 intersections r, s ∈ A ô A which admit a framed embedded Whitney disk V,
shown “underneath” the horizontal sheet in Figure 4.11. Check that the pair of transverse
intersections between A and the embedded order 1 Whitney disk V in Figure 4.11 admits a
framed order 2 Whitney disk (whose boundary is indicated in blue in the figure).

4.8.13. Exercise

In the paragraph before the proof of Lemma 4.1, check that the group element associated to
any point in A(D) ô A(D)′ is 1 or .

4.8.14. Exercise

Check that the operation of splitting a Whitney tower preserves edge decorations on trees.
Do this first for decorated order 1 trees (as in section 3.4), then generalize to higher-order
trees.

4.8.15. Exercise

Check that the signs of the trees created by the IHX construction in the proof of Lemma 4.4
have the correct signs, as shown in the right side of Figure 4.16.

4.8.16. Exercise

Check that the IHX construction in the proof of Lemma 4.4 also works for decorated trees.

4.8.17. Exercise

Prove that λ1(A1, A2, A3) from Theorem 3.2 is a well-defined homotopy invariant which van-
ishes if and only if A1 ∪ A2 ∪ A3 admits an order 2 non-repeating Whitney tower by adapting
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to this easier non-repeating setting the proof given in sections 4.1 and 4.2 of the analogous
statements for τ1(A).

HINT: First show that λ1(A1, A2, A3) is independent of the choice of order 1 non-repeating
Whitney tower, following sections 4.1.4, 4.1.5 and 4.1.6 (but without worrying about Whit-
ney disk twistings in section 4.1.4). Then one gets homotopy invariance exactly as in sec-
tion 4.1.9. To get an order 2 non-repeating Whitney tower proceed as in section 4.2 to first
achieve algebraic cancellation and then geometric cancellation of all order 1 non-repeating
intersections.
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