To a branched cover between closed surfaces one can associate a combinatorial datum given by the topological types of and , the degree of , the number of branching points of , and the partitions of given by the local degrees of at the preimages of the branching points. This datum must satisfy the Riemann-Hurwitz condition plus some extra ones if either or both and are non-orientable. A very old question posed by Hurwitz [14] in 1891 asks whether a combinatorial datum satisfying these necessary conditions is actually realizable (namely, associated to some existing ) or not (in which case it is called exceptional). Or, more generally, to count the number of realizations of the datum up to a natural equivalence relation. Many partial answers have been given to the Hurwitz problem over the time, but a complete solution is still missing. In this short course we will report on ancient and recent results and techniques employed to attack the question.
@article{WBLN_2020__7__A2_0, author = {Carlo Petronio}, title = {The {Hurwitz} existence problem for surface branched covers}, journal = {Winter Braids Lecture Notes}, note = {talk:2}, pages = {1--43}, publisher = {Winter Braids School}, volume = {7}, year = {2020}, doi = {10.5802/wbln.34}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.34/} }
TY - JOUR AU - Carlo Petronio TI - The Hurwitz existence problem for surface branched covers JO - Winter Braids Lecture Notes N1 - talk:2 PY - 2020 SP - 1 EP - 43 VL - 7 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.34/ DO - 10.5802/wbln.34 LA - en ID - WBLN_2020__7__A2_0 ER -
Carlo Petronio. The Hurwitz existence problem for surface branched covers. Winter Braids Lecture Notes, Volume 7 (2020), Talk no. 2, 43 p. doi : 10.5802/wbln.34. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.34/
[1] K. Barański, On realizability of branched coverings of the sphere, Topology Appl. 116 (2001), 279–291. | DOI | MR | Zbl
[2] I. Berstein – A. L. Edmonds, On the classification of generic branched coverings of surfaces, Illinois J. Math. 28 (1984), 64–82. | DOI | MR | Zbl
[3] G. Boccara, Cycles comme produit de deux permutations de classes données (French), Discrete Math. 38 (1982), 129–142. | DOI | MR | Zbl
[4] S. Bogatyi – D. L. Gonçalves – E. Kudryavtseva – H. Zieschang, Realization of primitive branched coverings over closed surfaces following the Hurwitz approach, Cent. Eur. J. Math. 1 (2003), 184–197. | DOI | MR | Zbl
[5] P. B. Cohen (now P. Tretkoff), Dessins d’enfant and Shimura varieties, In: “The Grothendieck Theory of Dessins d’Enfants,” (L. Schneps, ed.), London Math. Soc. Lecture Notes Series, Vol. 200, Cambridge University Press, 1994, pp. 237-243. | DOI | Zbl
[6] P. Corvaja – C. Petronio – U. Zannier, On certain permutation groups and sums of two squares, Elem. Math. 67 (2012), 169-181. | DOI | MR | Zbl
[7] P. Corvaja – U. Zannier, On the existence of covers of associated to certain permutations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 289–296. | DOI | MR | Zbl
[8] A. L. Edmonds – R. S. Kulkarni – R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), 773-790. | DOI | MR | Zbl
[9] C. L. Ezell, Branch point structure of covering maps onto nonorientable surfaces, Trans. Amer. Math. Soc. 243 (1978), 123–133. | DOI | MR | Zbl
[10] T. Ferragut – C. Petronio, Elementary solution of an infinite sequence of instances of the Hurwitz problem, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 297–307. | DOI | MR | Zbl
[11] S. M. Gersten, On branched covers of the -sphere by the -sphere, Proc. Amer. Math. Soc. 101 (1987), 761–766. | DOI | MR | Zbl
[12] I. P. Goulden – J. H. Kwak – J. Lee, Distributions of regular branched surface coverings, European J. Combin. 25 (2004), 437-455. | DOI | MR | Zbl
[13] A. Grothendieck, Esquisse d’un programme (1984). In: “Geometric Galois Action” (L. Schneps, P. Lochak eds.), 1: “Around Grothendieck’s Esquisse d’un Programme,” London Math. Soc. Lecture Notes Series, Vol. 242, Cambridge Univ. Press, 1997, pp. 5-48. | DOI | Zbl
[14] A. Hurwitz, Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten (German), Math. Ann. 39 (1891), 1–60. | Zbl
[15] D. H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167–174. | DOI | MR | Zbl
[16] I. Izmestiev – R. B. Kusner – G. Rote – B. Springborn – J. M. Sullivan, There is no triangulation of the torus with vertex degrees and related results: geometric proofs for combinatorial theorems, Geom. Dedicata 166 (2013), 15-29. | DOI | MR | Zbl
[17] S. K. Lando – A. K. Zvonkin, “Graphs on Surfaces and their Applications,” Encyclopaedia Math. Sci. Vol. 141, Springer, Berlin, 2004. | DOI | Zbl
[18] A. G. Khovanskii – S. Zdravkovska, Branched covers of and braid groups, J. Knot Theory Ramifications 5 (1996), 55–75. | DOI | Zbl
[19] J. H. Kwak, A. Mednykh, Enumerating branched coverings over surfaces with boundaries, European J. Combin. 25 (2004), 23-34. | DOI | MR | Zbl
[20] J. H. Kwak, A. Mednykh, Enumeration of branched coverings of closed orientable surfaces whose branch orders coincide with multiplicity, Studia Sci. Math. Hungar. 44 (2007), 215-223. | DOI | MR | Zbl
[21] J. H. Kwak, A. Mednykh, V. Liskovets, Enumeration of branched coverings of nonorientable surfaces with cyclic branch points, SIAM J. Discrete Math. 19 (2005), 388-398. | DOI | MR | Zbl
[22] A. D. Mednykh, On the solution of the Hurwitz problem on the number of nonequivalent coverings over a compact Riemann surface (Russian), Dokl. Akad. Nauk SSSR 261 (1981), 537-542.
[23] A. D. Mednykh, Nonequivalent coverings of Riemann surfaces with a prescribed ramification type (Russian), Sibirsk. Mat. Zh. 25 (1984), 120-142. | DOI | MR | Zbl
[24] S. Monni, J. S. Song, Y. S. Song, The Hurwitz enumeration problem of branched covers and Hodge integrals, J. Geom. Phys. 50 (2004), 223-256. | DOI | MR | Zbl
[25] F. Pakovich, Solution of the Hurwitz problem for Laurent polynomials, J. Knot Theory Ramifications 18 (2009), 271-302. | DOI | MR | Zbl
[26] F. Pakovich – A. K. Zvonkin, Minimum degree of the difference of two polynomials over , and weighted plane trees, Selecta Math. (N.S.) 20 (2014), 1003–1065. | DOI | MR | Zbl
[27] M. A. Pascali – C. Petronio, Surface branched covers and geometric -orbifolds, Trans. Amer. Math. Soc. 361 (2009), 5885-5920 | DOI | MR | Zbl
[28] M. A. Pascali – C. Petronio, Branched covers of the sphere and the prime-degree conjecture, Ann. Mat. Pura Appl. 191 (2012), 563-594. | DOI | MR | Zbl
[29] E. Pervova – C. Petronio, On the existence of branched coverings between surfaces with prescribed branch data. I, Algebr. Geom. Topol. 6 (2006), 1957–1985. | DOI | MR | Zbl
[30] E. Pervova – C. Petronio, On the existence of branched coverings between surfaces with prescribed branch data. II, J. Knot Theory Ramifications 17 (2008), 787–816. | DOI | MR | Zbl
[31] C. Petronio, Explicit computation of some families of Hurwitz numbers, European J. Combin. 75 (2018), 136-151. | DOI | MR | Zbl
[32] C. Petronio, Explicit computation of some families of Hurwitz numbers. II, Adv. Geom. 20 (2020), 483-498. | DOI | MR | Zbl
[33] C. Petronio, Realizations of certain odd-degree surface branch data, Rend. Istit. Mat. Univ. Trieste 52 (2020), 355-379. | Zbl
[34] C. Petronio – F. Sarti, Counting surface branched covers, Studia Sci. Math. Hungar. 56 (2019), 309-322. | DOI | MR | Zbl
[35] J. Song – B. Xu, On rational functions with more than three branch points, Algebra Colloq. 27 (2020), 231-246. | DOI | MR | Zbl
[36] R. Thom, L’équivalence d’une fonction différentiable et d’un polynôme (French), Topology 3 (1965), no. suppl, suppl. 2, 297–307. | DOI
[37] U. Zannier, On Davenport’s bound for the degree of and Riemann’s existence theorem, Acta Arith. 71 (1995), 107–137. | DOI | MR | Zbl
[38] H. Zheng, Realizability of branched coverings of , Topology Appl. 153 (2006), 2124–2134. | DOI | Zbl
[39] M. Zieve, Private communication, 2019.
Cited by Sources: