@article{SLSEDP_2011-2012____A22_0, author = {Gilles A. Francfort}, title = {Un r\'esum\'e de la th\'eorie variationnelle de la rupture}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:22}, pages = {1--11}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.17}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.17/} }
TY - JOUR AU - Gilles A. Francfort TI - Un résumé de la théorie variationnelle de la rupture JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:22 PY - 2011-2012 SP - 1 EP - 11 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.17/ DO - 10.5802/slsedp.17 LA - fr ID - SLSEDP_2011-2012____A22_0 ER -
%0 Journal Article %A Gilles A. Francfort %T Un résumé de la théorie variationnelle de la rupture %J Séminaire Laurent Schwartz — EDP et applications %Z talk:22 %D 2011-2012 %P 1-11 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.17/ %R 10.5802/slsedp.17 %G fr %F SLSEDP_2011-2012____A22_0
Gilles A. Francfort. Un résumé de la théorie variationnelle de la rupture. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 22, 11 p. doi : 10.5802/slsedp.17. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.17/
[1] L. Ambrosio, N. Fusco & D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford (2000). | MR | Zbl
[2] L. Ambrosio & V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via -convergence, Comm. Pure Appl. Math. 43 (1990), 999-1036. | MR | Zbl
[3] M. Amestoy & J.-B. Leblond, Crack paths in plane situation – II, Detailed form of the expansion of the stress intensity factors, Int. J. Solids Stuct. 29 (1989), 465–501. | MR | Zbl
[4] H.-A. Bahr, H.-J. Weiss, H.G. Maschke & F. Meissner, Multiple crack propagation in a strip caused by thermal shock, Theoretical and Applied Fracture Mechanics 10 (1988), 219–226.
[5] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, dans : Adv. Appl. Mech., Vol. 7, Academic Press, New York (1962), 55–129. | MR
[6] B. Bourdin, G. A. Francfort & J.-J. Marigo, The Variational Approach to Fracture, Springer, New York (2008). | MR | Zbl
[7] D. Bucur & N. Varchon, Boundary variation for a Neumann problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 807–821. | Numdam | MR | Zbl
[8] A. Braides, G. Dal Maso & A. Garroni, Variational formulation of softening phenomena in fracture mechanics : the one dimensional case, Arch. Rat. Mech. Anal. 146 (1999), 23–58. | MR | Zbl
[9] A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Rational Mech. Anal. 167 (2003), 211–233. | MR | Zbl
[10] A. Chambolle, An approximation result for special functions with bounded variations, J. Math Pures Appl. 83 (2004), 929–954. | MR | Zbl
[11] A. Chambolle & F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets, Comm. Partial Differential Equations 22 (1997), 811–840. | MR | Zbl
[12] A. Chambolle, G. A. Francfort & J.-J. Marigo, Revisiting Energy Release Rates in Brittle Fracture, J. Nonlinear Sci. 20 (2010), 395–424. | MR | Zbl
[13] G. Dal Maso, G. A. Francfort & R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal. 176 (2005), 165–225. | MR | Zbl
[14] G. Dal Maso & G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 257–290. | Numdam | MR | Zbl
[15] G. Dal Maso & R. Toader, A Model for the Quasi-Static Growth of Brittle Fractures : Existence and Approximation Results, Arch. Rational Mech. Anal. 162 (2002), 101–135. | MR | Zbl
[16] G. A. Francfort & C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Commun. Pur. Appl. Math. 56 (2003), 1465–1500. | MR | Zbl
[17] G. A. Francfort & J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998), 1319–1342. | MR | Zbl
[18] A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London CCXXI-A (1921), 163–198.
[19] A. Mielke, Evolution of rate-independent systems, dans : Evolutionary equations. Vol. II, Dafermos, A. and Feireisl, E., eds., Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005), 41–559. | MR | Zbl
Cited by Sources: