Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire Laurent Schwartz — EDP et applications
  • Année 2023-2024
  • Exposé no. 16
  • Suivant
Some asymptotic profiles for the viscous Burgers equation with infinite mass
Eliot Pacherie1
1 CNRS and Cergy University
Séminaire Laurent Schwartz — EDP et applications (2023-2024), Exposé no. 16, 8 p.
  • Résumé

This is a summary of the papers [6], [7] done in collaboration with Tej-Eddine Ghoul and Nader Masmoudi and [2] done in collaboration with Nicola de Nitti. We are interested in the long time behavior of solutions of the viscous Burgers equation for a class of initial data with infinite mass. We show that, up to a rescaling, they converge to a limit profile that has a discontinuity. We investigate this profile and explain how to understand this discontinuity point.

  • Détail
  • Export
  • Comment citer
Publié le : 2024-07-11
Zbl
DOI : 10.5802/slsedp.167
Affiliations des auteurs :
Eliot Pacherie 1

1 CNRS and Cergy University
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2023-2024____A4_0,
     author = {Eliot Pacherie},
     title = {Some asymptotic profiles for the viscous {Burgers} equation with infinite mass},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:16},
     pages = {1--8},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2023-2024},
     doi = {10.5802/slsedp.167},
     zbl = {1547.35100},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/}
}
TY  - JOUR
AU  - Eliot Pacherie
TI  - Some asymptotic profiles for the viscous Burgers equation with infinite mass
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:16
PY  - 2023-2024
SP  - 1
EP  - 8
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/
DO  - 10.5802/slsedp.167
LA  - en
ID  - SLSEDP_2023-2024____A4_0
ER  - 
%0 Journal Article
%A Eliot Pacherie
%T Some asymptotic profiles for the viscous Burgers equation with infinite mass
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:16
%D 2023-2024
%P 1-8
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/
%R 10.5802/slsedp.167
%G en
%F SLSEDP_2023-2024____A4_0
Eliot Pacherie. Some asymptotic profiles for the viscous Burgers equation with infinite mass. Séminaire Laurent Schwartz — EDP et applications (2023-2024), Exposé no. 16, 8 p. doi : 10.5802/slsedp.167. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/
  • Bibliographie
  • Cité par

[1] Julian D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math., 9:225–236, 1951. | DOI | MR | Zbl

[2] N. De Nitti and E. Pacherie. Nested discontinuous asymptotic profiles for the viscous Burgers equation with infinite mass. | arXiv

[3] Daniel B. Dix. Large-time behaviour of solutions of Burgers’ equation. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 132(4):843–878, 2002. | DOI | MR | Zbl

[4] Miguel Escobedo, Juan Luis Vazquez, and Enrique Zuazua. Asymptotic behaviour and source-type solutions for a diffusion-convection equation. Archive for Rational Mechanics and Analysis, 124:43–65, 01 1993. | MR | Zbl

[5] Thierry Gallay and Arnd Scheel. Viscous shocks and long-time behavior of scalar conservation laws. Communications on Pure and Applied Analysis, 2023. | arXiv | DOI

[6] Tej-Eddine Ghoul, Nader Masmoudi, and Eliot Pacherie. Nonlinear enhanced dissipation in viscous Burgers type equations II. Communications in Partial Differential Equations, 48(10-12):1286–1322, 2023. | DOI | MR | Zbl

[7] Tej-Eddine Ghoul, Nader Masmoudi, and Eliot Pacherie. Nonlinear enhanced dissipation in viscous Burgers type equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire (2024), to appear. | arXiv | DOI

[8] Eberhard Hopf. The partial differential equation u t +uu x =μu xx . Comm. Pure Appl. Math., 3:201–230, 1950. | DOI | MR | Zbl

[9] Shoshana Kamin and Lambertus A. Peletier. Large time behaviour of solutions of the heat equation with absorption. Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze, 12:393–408, 1985. | MR | Zbl

[10] Pavol Quittner and Philippe Souplet. Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Cham.

[11] Enrique Zuazua. Asymptotic behavior of scalar convection-diffusion equations. | arXiv

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre