This is a summary of the papers [6], [7] done in collaboration with Tej-Eddine Ghoul and Nader Masmoudi and [2] done in collaboration with Nicola de Nitti. We are interested in the long time behavior of solutions of the viscous Burgers equation for a class of initial data with infinite mass. We show that, up to a rescaling, they converge to a limit profile that has a discontinuity. We investigate this profile and explain how to understand this discontinuity point.
@article{SLSEDP_2023-2024____A4_0, author = {Eliot Pacherie}, title = {Some asymptotic profiles for the viscous {Burgers} equation with infinite mass}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:16}, pages = {1--8}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2023-2024}, doi = {10.5802/slsedp.167}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/} }
TY - JOUR AU - Eliot Pacherie TI - Some asymptotic profiles for the viscous Burgers equation with infinite mass JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:16 PY - 2023-2024 SP - 1 EP - 8 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/ DO - 10.5802/slsedp.167 LA - en ID - SLSEDP_2023-2024____A4_0 ER -
%0 Journal Article %A Eliot Pacherie %T Some asymptotic profiles for the viscous Burgers equation with infinite mass %J Séminaire Laurent Schwartz — EDP et applications %Z talk:16 %D 2023-2024 %P 1-8 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/ %R 10.5802/slsedp.167 %G en %F SLSEDP_2023-2024____A4_0
Eliot Pacherie. Some asymptotic profiles for the viscous Burgers equation with infinite mass. Séminaire Laurent Schwartz — EDP et applications (2023-2024), Talk no. 16, 8 p. doi : 10.5802/slsedp.167. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.167/
[1] Julian D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math., 9:225–236, 1951. | DOI | Zbl
[2] N. De Nitti and E. Pacherie. Nested discontinuous asymptotic profiles for the viscous Burgers equation with infinite mass. | arXiv
[3] Daniel B. Dix. Large-time behaviour of solutions of Burgers’ equation. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 132(4):843–878, 2002. | DOI | Zbl
[4] Miguel Escobedo, Juan Luis Vazquez, and Enrique Zuazua. Asymptotic behaviour and source-type solutions for a diffusion-convection equation. Archive for Rational Mechanics and Analysis, 124:43–65, 01 1993. | Zbl
[5] Thierry Gallay and Arnd Scheel. Viscous shocks and long-time behavior of scalar conservation laws. Communications on Pure and Applied Analysis, 2023. | arXiv | DOI
[6] Tej-Eddine Ghoul, Nader Masmoudi, and Eliot Pacherie. Nonlinear enhanced dissipation in viscous Burgers type equations II. Communications in Partial Differential Equations, 48(10-12):1286–1322, 2023. | DOI | Zbl
[7] Tej-Eddine Ghoul, Nader Masmoudi, and Eliot Pacherie. Nonlinear enhanced dissipation in viscous Burgers type equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire (2024), to appear. | arXiv | DOI
[8] Eberhard Hopf. The partial differential equation . Comm. Pure Appl. Math., 3:201–230, 1950. | DOI | Zbl
[9] Shoshana Kamin and Lambertus A. Peletier. Large time behaviour of solutions of the heat equation with absorption. Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze, 12:393–408, 1985. | Zbl
[10] Pavol Quittner and Philippe Souplet. Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Cham.
[11] Enrique Zuazua. Asymptotic behavior of scalar convection-diffusion equations. | arXiv
Cited by Sources: