We present recent works on the construction of high-frequency solutions to the Einstein vacuum equations in general relativity, based on [Tou22b, Tou23]. In these articles, the author shows the existence of a family of vacuum spacetimes in generalised wave gauge oscillating at frequency and defined by a geometric optics ansatz. In this survey, we first review the Cauchy theory for the Einstein vacuum equations in wave gauge, geometric optics and Burnett’s conjecture in general relativity. This will motivate our main result, for which we provide a sketch of proof high-lighting both quasi-linear and semi-linear challenges.
@article{SLSEDP_2022-2023____A2_0, author = {Arthur Touati}, title = {Geometric optics approximation for the {Einstein} vacuum equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:7}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2022-2023}, doi = {10.5802/slsedp.159}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.159/} }
TY - JOUR AU - Arthur Touati TI - Geometric optics approximation for the Einstein vacuum equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:7 PY - 2022-2023 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.159/ DO - 10.5802/slsedp.159 LA - en ID - SLSEDP_2022-2023____A2_0 ER -
%0 Journal Article %A Arthur Touati %T Geometric optics approximation for the Einstein vacuum equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:7 %D 2022-2023 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.159/ %R 10.5802/slsedp.159 %G en %F SLSEDP_2022-2023____A2_0
Arthur Touati. Geometric optics approximation for the Einstein vacuum equations. Séminaire Laurent Schwartz — EDP et applications (2022-2023), Talk no. 7, 13 p. doi : 10.5802/slsedp.159. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.159/
[BCE + 15] T Buchert, M Carfora, G F R Ellis, E W Kolb, M A H MacCallum, J J Ostrowski, S Räsänen, B F Roukema, L Andersson, A A Coley, and et al. Is there proof that backreaction of inhomogeneities is irrelevant in cosmology? Classical and Quantum Gravity, 32(21):215021, Oct 2015. | DOI | MR | Zbl
[BH64] Dieter R. Brill and James B. Hartle. Method of the self-consistent field in general relativity and its application to the gravitational geon. Phys. Rev., 135:B271–B278, Jul 1964. | DOI | MR
[Bur89] Gregory A. Burnett. The high-frequency limit in general relativity. J. Math. Phys., 30(1):90–96, 1989. | DOI | MR | Zbl
[CB52] Yvonne Choquet-Bruhat. Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math., 88:141–225, 1952. | DOI | Zbl
[CB69] Yvonne Choquet-Bruhat. Construction de solutions radiatives approchées des équations d’Einstein. Comm. Math. Phys., 12:16–35, 1969. | DOI
[CB00] Yvonne Choquet-Bruhat. The null condition and asymptotic expansions for the Einstein equations. Ann. Phys. (8), 9(3-5):258–266, 2000. | DOI | MR | Zbl
[CB09] Yvonne Choquet-Bruhat. General relativity and the Einstein equations. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009. | Zbl
[CBG69] Yvonne Choquet-Bruhat and Robert Geroch. Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys., 14:329–335, 1969. | DOI | MR | Zbl
[Chr86] Demetrios Christodoulou. Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math., 39(2):267–282, 1986. | DOI | MR | Zbl
[Ein15] Albert Einstein. The Field Equations of Gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1915:844–847, 1915. | Zbl
[GdC21] André Guerra and Rita Teixeira da Costa. Oscillations in wave map systems and homogenization of the einstein equations in symmetry. 2021. | arXiv
[GW11] Stephen R. Green and Robert M. Wald. New framework for analyzing the effects of small scale inhomogeneities in cosmology. Physical Review D, 83(8), Apr 2011. | DOI
[GW15] Stephen R. Green and Robert M. Wald. Comments on backreaction. 2015. | arXiv
[HK83] John K. Hunter and Joseph B. Keller. Weakly nonlinear high frequency waves. Commun. Pure Appl. Math., 36:547–569, 1983. | DOI | MR | Zbl
[HL19] Cécile Huneau and Jonathan Luk. Trilinear compensated compactness and Burnett’s conjecture in general relativity. 2019. | arXiv
[HL18a] Cécile Huneau and Jonathan Luk. Einstein equations under polarized symmetry in an elliptic gauge. Comm. Math. Phys., 361(3):873–949, 2018. | DOI | Zbl
[HL18b] Cécile Huneau and Jonathan Luk. High-frequency backreaction for the Einstein equations under polarized -symmetry. Duke Math. J., 167(18):3315–3402, 2018. | DOI | MR | Zbl
[Hun18] Cécile Huneau. Stability of Minkowski space-time with a translation space-like Killing field. Ann. PDE, 4(1):147, 2018. Id/No 12. | DOI | MR | Zbl
[HV18] Peter Hintz and András Vasy. The global non-linear stability of the Kerr-de Sitter family of black holes. Acta Math., 220(1):1–206, 2018. | DOI | MR | Zbl
[Isa68a] Richard A. Isaacson. Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics. Phys. Rev., 166:1263–1271, 1968. | DOI
[Isa68b] Richard A. Isaacson. Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Effective Stress Tensor. Phys. Rev., 166:1272–1279, 1968. | DOI
[JMR93] Jean-Luc Joly, Guy Metivier, and Jeffrey Rauch. Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J., 70(2):373–404, 1993. | DOI | MR | Zbl
[JMR00] Jean-Luc Joly, Guy Metivier, and Jeffrey Rauch. Transparent nonlinear geometric optics and Maxwell-Bloch equations. J. Differ. Equations, 166(1):175–250, 2000. | DOI | MR | Zbl
[Joh19] Thomas William Johnson. The linear stability of the schwarzschild solution to gravitational perturbations in the generalised wave gauge. Annals of PDE, 5(2):13, 2019. | DOI | MR | Zbl
[JR92] Jean-Luc Joly and Jeffrey Rauch. Justification of multidimensional single phase semilinear geometric optics. Trans. Amer. Math. Soc., 330(2):599–623, 1992. | DOI | MR | Zbl
[Kla86] Sergiu Klainerman. The null condition and global existence to nonlinear wave equations. In Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pages 293–326. Amer. Math. Soc., Providence, RI, 1986.
[KRS15] Sergiu Klainerman, Igor Rodnianski, and Jérémie Szeftel. The bounded curvature conjecture. Invent. Math., 202(1):91–216, 2015. | DOI | MR | Zbl
[Lan13] David Lannes. Space time resonances [after Germain, Masmoudi, Shatah]. In Séminaire Bourbaki volume 2011/2012 exposés 1043-1058, number 352 in Astérisque. Société mathématique de France, 2013.
[Lax57] Peter D. Lax. Asymptotic solutions of oscillatory initial value problems. Duke Math. J., 24:627–646, 1957. | DOI | MR | Zbl
[Lic44] Andre Lichnerowicz. L’intégration des équations de la gravitation relativiste et le problème des corps. J. Math. Pures Appl. (9), 23:37–63, 1944. | Zbl
[LR03] Hans Lindblad and Igor Rodnianski. The weak null condition for Einstein’s equations. C. R., Math., Acad. Sci. Paris, 336(11):901–906, 2003. | DOI | MR | Zbl
[LR10] Hans Lindblad and Igor Rodnianski. The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2), 171(3):1401–1477, 2010. | DOI | MR | Zbl
[LR17] Jonathan Luk and Igor Rodnianski. Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations. Camb. J. Math., 5(4):435–570, 2017. | DOI | MR | Zbl
[LR20] Jonathan Luk and Igor Rodnianski. High-frequency limits and null dust shell solutions in general relativity. 2020. | arXiv
[Luk12] Jonathan Luk. On the local existence for the characteristic initial value problem in general relativity. Int. Math. Res. Not., 2012(20):4625–4678, 2012. | DOI | Zbl
[MTW73] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Gravitation. W. H. Freeman and Co., San Francisco, Calif., 1973.
[Mé09] Guy Métivier. The mathematics of nonlinear optics. In C.M. Dafermos and Milan Pokorný, editors, Handbook of Differential Equations, volume 5 of Handbook of Differential Equations: Evolutionary Equations, pages 169–313. North-Holland, 2009. | DOI | Zbl
[Rau12] Jeffrey Rauch. Hyperbolic partial differential equations and geometric optics, volume 133 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. | DOI | Zbl
[Ren90] A. D. Rendall. Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. R. Soc. Lond., Ser. A, 427(1872):221–239, 1990. | DOI | MR
[Sog95] Christopher D. Sogge. Lectures on nonlinear wave equations. Boston, MA: International Press, 1995. | Zbl
[Tou23] Arthur Touati. High-frequency solutions to the constraint equations. Communications in Mathematical Physics, 2023. | DOI | Zbl
[Tou22a] Arthur Touati. Einstein vacuum equations with symmetry in an elliptic gauge: Local well-posedness and blow-up criterium. Journal of Hyperbolic Differential Equations, 19(04):635–715, 2022. | DOI | MR | Zbl
[Tou22b] Arthur Touati. High-frequency solutions to the Einstein vacuum equations: local existence in generalised wave gauge. 2022. | arXiv
Cited by Sources: