We review recent results on the semiclassical behaviour of Schrödinger operators with Neumann boundary conditions. In this setting, the validity of Weyl’s law requires additional conditions on the potential. We will explain the techniques needed to control the number of bound states near the boundary, thus leading to universal estimates on the number of bound states.
@article{SLSEDP_2022-2023____A3_0, author = {Charlotte Dietze}, title = {Weyl{\textquoteright}s law for {Neumann} {Schr\"odinger} operators on {H\"older} domains}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:9}, pages = {1--9}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2022-2023}, doi = {10.5802/slsedp.158}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.158/} }
TY - JOUR AU - Charlotte Dietze TI - Weyl’s law for Neumann Schrödinger operators on Hölder domains JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:9 PY - 2022-2023 SP - 1 EP - 9 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.158/ DO - 10.5802/slsedp.158 LA - en ID - SLSEDP_2022-2023____A3_0 ER -
%0 Journal Article %A Charlotte Dietze %T Weyl’s law for Neumann Schrödinger operators on Hölder domains %J Séminaire Laurent Schwartz — EDP et applications %Z talk:9 %D 2022-2023 %P 1-9 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.158/ %R 10.5802/slsedp.158 %G en %F SLSEDP_2022-2023____A3_0
Charlotte Dietze. Weyl’s law for Neumann Schrödinger operators on Hölder domains. Séminaire Laurent Schwartz — EDP et applications (2022-2023), Talk no. 9, 9 p. doi : 10.5802/slsedp.158. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.158/
[1] Wolfgang Arendt, Robin Nittka, Wolfgang Peter, and Frank Steiner, Weyl’s law: Spectral properties of the Laplacian in mathematics and physics, Mathematical analysis of evolution, information, and complexity (2009), 1–71. | DOI | Zbl
[2] Peter Buser, John Conway, Peter Doyle, and Klaus-Dieter Semmler, Some planar isospectral domains, 2010. | arXiv
[3] Richard Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik, Mathematische Zeitschrift 7 (1920), no. 1-4, 1–57. | DOI | Zbl
[4] Michael Cwikel, Weak type estimates for singular values and the number of bound states of Schrodinger operators, Annals of Mathematics 106 (1977), 93–100. | DOI | MR | Zbl
[5] Charlotte Dietze, Semiclassical estimates for Schrödinger operators with Neumann boundary conditions on Hölder domains, 2023. | arXiv
[6] Ernst Fischer, Über quadratische Formen mit reellen Koeffizienten, Monatshefte für Mathematik und Physik 16 (1905), 234–249. | DOI | Zbl
[7] Rupert L Frank, Ari Laptev, and Timo Weidl, Schrödinger operators: eigenvalues and Lieb–Thirring inequalities, vol. 200, Cambridge University Press, 2022. | DOI
[8] Rupert L Frank and Simon Larson, Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain, Journal für die reine und angewandte Mathematik (Crelles Journal) 2020 (2020), no. 766, 195–228. | DOI | Zbl
[9] Rupert L Frank, Elliott H Lieb, and Robert Seiringer, Equivalence of Sobolev inequalities and Lieb-Thirring inequalities, XVIth International Congress On Mathematical Physics, World Scientific, 2010, pp. 523–535. | DOI | Zbl
[10] Carolyn Gordon, David Webb, and Scott Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Inventiones mathematicae 110 (1992), no. 1, 1–22. | DOI | MR
[11] Rainer Hempel, Luis A Seco, and Barry Simon, The essential spectrum of Neumann Laplacians on some bounded singular domains, Journal of Functional Analysis 102 (1991), no. 2, 448–483. | DOI | MR | Zbl
[12] V Ya Ivrii, Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary, Functional Analysis and Its Applications 14 (1980), no. 2, 98–106. | DOI | Zbl
[13] Mark Kac, Can one hear the shape of a drum?, The American Mathematical Monthly 73 (1966), no. 4P2, 1–23. | DOI | MR | Zbl
[14] Denis ALeksandrovich Labutin, Embedding of Sobolev spaces on Hölder domains, Trudy Matematicheskogo Instituta imeni VA Steklova 227 (1999), 170–179. | DOI
[15] Elliott Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bulletin of the American Mathematical Society 82 (1976), no. 5, 751–753. | DOI | MR | Zbl
[16] Elliott H Lieb and Robert Seiringer, The stability of matter in quantum mechanics, Cambridge University Press, 2010.
[17] Hendrik Antoon Lorentz, Alte und neue Fragen der Physik, 1910. | Zbl
[18] John Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proceedings of the National Academy of Sciences 51 (1964), no. 4, 542–542. | DOI | MR | Zbl
[19] Yu Netrusov and Yu Safarov, Weyl asymptotic formula for the laplacian on domains with rough boundaries, Communications in Mathematical Physics 253 (2005), no. 2, 481–509. | DOI | MR | Zbl
[20] Jitse Niesen, Isospectral drums.svg, 2007, [Online; accessed 30 April, 2023], https://commons.wikimedia.org/wiki/File:Isospectral_drums.svg.
[21] M Planck, Über das Gesetz der Energieverteilung im Normalspectrum, Ann. Phys 309 (1901), no. 3, 353–363. | DOI | Zbl
[22] John William Strutt Baron Rayleigh, The theory of sound, vol. 2, Macmillan, 1896.
[23] Lord Rayleigh, The dynamical theory of gases and radiation, Nature 72 (1905), 54–55. | DOI | Zbl
[24] GV Rozenbljum, Distribution of the discrete spectrum of singular differential operators, Soviet Math. Doki. 202 (1972), 1012–1015.
[25] —, On the eigenvalues of the first boundary value problem in unbounded domains, Mathematics of the USSR-Sbornik 18 (1972), no. 2, 235. | DOI
[26] Grigorii Vladimirovich Rozenblum, On the distribution of eigenvalues of the first boundary value problem in unbounded regions, Doklady Akademii Nauk 200 (1971), no. 5, 1034–1036.
[27] Arnold Sommerfeld, Die Greensche Funktion der Schwingungsgleichung für ein beliebiges Gebiet, Physikal. Zeitschr 11 (1910), 1057–1066. | Zbl
[28] Hermann Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911 (1911), 110–117. | Zbl
[29] Steve Zelditch, Inverse spectral problem for analytic domains, II: -symmetric domains, Annals of mathematics (2009), 205–269. | DOI | Zbl
Cited by Sources: