@article{SLSEDP_2022-2023____A5_0, author = {Thomas Lebl\'e}, title = {Hyperuniformity of the two-dimensional one-component plasma}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:6}, pages = {1--16}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2022-2023}, doi = {10.5802/slsedp.161}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.161/} }
TY - JOUR AU - Thomas Leblé TI - Hyperuniformity of the two-dimensional one-component plasma JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:6 PY - 2022-2023 SP - 1 EP - 16 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.161/ DO - 10.5802/slsedp.161 LA - en ID - SLSEDP_2022-2023____A5_0 ER -
%0 Journal Article %A Thomas Leblé %T Hyperuniformity of the two-dimensional one-component plasma %J Séminaire Laurent Schwartz — EDP et applications %Z talk:6 %D 2022-2023 %P 1-16 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.161/ %R 10.5802/slsedp.161 %G en %F SLSEDP_2022-2023____A5_0
Thomas Leblé. Hyperuniformity of the two-dimensional one-component plasma. Séminaire Laurent Schwartz — EDP et applications (2022-2023), Talk no. 6, 16 p. doi : 10.5802/slsedp.161. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.161/
[AS21] Scott Armstrong and Sylvia Serfaty. Local laws and rigidity for Coulomb gases at any temperature. Ann. Probab., 49(1):46–121, 2021. | DOI | MR | Zbl
[BBNY17] Roland Bauerschmidt, Paul Bourgade, Miika Nikula, and Horng-Tzer Yau. Local density for two-dimensional one-component plasma. Comm. Math. Phys., 356(1):189–230, 2017. | DOI | MR | Zbl
[BBNY19] Roland Bauerschmidt, Paul Bourgade, Miika Nikula, and Horng-Tzer Yau. The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. Adv. Theor. Math. Phys., 23(4):841–1002, 2019. | DOI | MR | Zbl
[Bec87] József Beck. Irregularities of distribution. I. Acta Mathematica, 159(1):1–49, 1987. | DOI | Zbl
[DS75] R. L. Dobrushin and S. B. Shlosman. Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Comm. Math. Phys., 42(1):31–40, Feb 1975. | DOI | MR
[FH99] Peter J Forrester and Graeme Honner. Exact statistical properties of the zeros of complex random polynomials. J. Phys. A, 32(16):2961, 1999. | DOI | MR | Zbl
[FL21] Marcel Fenzl and Gaultier Lambert. Precise deviations for disk counting statistics of invariant determinantal processes. Int. Math. Res. Not.., 2022(10):7420–7494, 01 2021. | DOI | Zbl
[FP81] Jürg Fröhlich and Charles Pfister. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys, 81:277–298, 1981. | DOI | MR
[FP86] Jürg Fröhlich and Charles-Edouard Pfister. Absence of crystalline ordering in two dimensions. Comm. Math. Phys, 104:697–700, 1986. | DOI | MR | Zbl
[Geo99] Hans-Otto Georgii. Translation invariance and continuous symmetries in two-dimensional continuum systems. In Mathematical results in statistical mechanics (Marseilles, 1998), pages 53–69. World Sci. Publ., River Edge, NJ, 1999. | MR | Zbl
[Gin65] Jean Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys., 6(3):440–449, 1965. | DOI | MR | Zbl
[GL17] Subhroshekhar Ghosh and Joel L Lebowitz. Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey. Indian J. Pure Appl. Math., 48(4):609–631, 2017. | DOI | MR | Zbl
[GP17] Subhroshekhar Ghosh and Yuval Peres. Rigidity and tolerance in point processes: Gaussian zeros and ginibre eigenvalues. Duke Math. J., 166(10):1789–1858, 2017. | DOI | MR | Zbl
[GS75] Peter Gacs and Domokos Szász. On a problem of Cox concerning point processes in of “controlled variability”. Ann. Probab., 3(4):597–607, 1975. | DOI | MR | Zbl
[HKPV06] J Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. Determinantal processes and independence. Probab. Surv., 3:206–229, 2006. | DOI | MR | Zbl
[JLM93] B Jancovici, Joel L Lebowitz, and G Manificat. Large charge fluctuations in classical Coulomb systems. J. Statist. Phys., 72(3-4):773–787, 1993. | DOI | MR | Zbl
[Leb83] Joel Lebowitz. Charge fluctuations in Coulomb systems. Phys. Rev. A, 27(3):1491, 1983. | DOI
[Leb17] Thomas Leblé. Local microscopic behavior for 2D Coulomb gases. Probab. Theory Related Fields, 169(3-4):931–976, 2017. | DOI | MR | Zbl
[Lew22] Mathieu Lewin. Coulomb and Riesz gases: The known and the unknown. J. Math. Phys., 63(6), 2022. | DOI | MR | Zbl
[LS18] Thomas Leblé and Sylvia Serfaty. Fluctuations of two dimensional Coulomb gases. Geom. Funct. Anal., 28(2):443–508, 2018. | DOI | MR | Zbl
[LWL00] D. Levesque, J.-J. Weis, and Joel Lebowitz. Charge fluctuations in the two-dimensional one-component plasma. J. Statist. Phys., 100(1):209–222, 2000. | DOI | MR | Zbl
[Mar88] Ph A Martin. Sum rules in charged fluids. Rev. Modern Phys., 60(4):1075, 1988. | DOI | MR
[MY80] Ph. A. Martin and T. Yalcin. The charge fluctuations in classical Coulomb systems. J. Statist. Phys., 22(4):435–463, 1980. | DOI | MR
[NSV08] Fedor Nazarov, Mikhail Sodin, and Alexander Volberg. The Jancovici–Lebowitz–Manificat law for large fluctuations of random complex zeroes. Comm. Math. Phys., 284(3):833–865, 2008. | DOI | MR | Zbl
[RS16] Nicolas Rougerie and Sylvia Serfaty. Higher-dimensional Coulomb gases and renormalized energy functionals. Comm. Pure Appl. Math., 69(3):519–605, 2016. | DOI | MR | Zbl
[Ser18] Sylvia Serfaty. Systems of points with Coulomb interactions. Eur. Math. Soc. Newsl, 110:16–21, 2018. | DOI | MR
[Ser23] Sylvia Serfaty. Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature. Ann. Inst. H. Poincaré Probab. Statist., 59(2):1074 – 1142, 2023. | DOI | MR
[Shi06] Tomoyuki Shirai. Large deviations for the fermion point process associated with the exponential kernel. J. Statist. Phys., 123(3):615–629, 2006. | DOI | MR | Zbl
[Sim14] Barry Simon. The statistical mechanics of lattice gases, volume I. Princeton University Press, 2014.
[SS15] Etienne Sandier and Sylvia Serfaty. 2D Coulomb gases and the renormalized energy. Ann. Probab., 43(4):2026–2083, 2015. | DOI | MR | Zbl
[SZ08] Bernard Shiffman and Steve Zelditch. Number variance of random zeros on complex manifolds. Geom. Funct. Anal., 18(4):1422–1475, 2008. | DOI | MR | Zbl
[Tor18] Salvatore Torquato. Hyperuniform states of matter. Phys. Rep., 745:1–95, 2018. | DOI | MR | Zbl
[TS03] Salvatore Torquato and Frank H Stillinger. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E, 68(4):041113, 2003. | DOI | MR
Cited by Sources: