In the past two decades L. Schwartz theory of distributions has become an essential tool in the study of smooth dynamical systems. In this talk we have focused on two kinds of applications to parabolic systems: smooth rigidity and effective equidistribution. Parabolic systems are zero entropy systems characterized by polynomial divergence of nearby orbits with time. Examples include unipotent flows on quotient of semisimple groups, in particular horocycle flows for hyperbolic surfaces, nilflows and translation flows on surfaces. The rigidity problem asks whether systems which are topologically conjugated are necessarily smoothly conjugated. This problem is motivated by the results of M. Herman and J.-C. Yoccoz on circle diffeomorphisms, but is wide open in higher dimensions. We review results and related conjectures on cohomological equations for flows and propose a general conjecture that states that the structure of the space of its invariant distributions determines whether a smoothly stable system is rigid. Effective equidistribution consists in bounds on the speed of convergence of ergodic averages (of smooth functions). We present two results of effective equidistribution for homogenous flows: the first on twisted horocycle flows, the second on a class of nilflows, with applications to questions in analytic number theory. Our method is based on the analysis of the scaling of Sobolev norms of invariant distributions under scaling of the homogeneous structure.
@article{SLSEDP_2022-2023____A6_0, author = {Giovanni Forni}, title = {Defects in homogenization theory}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--17}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2022-2023}, doi = {10.5802/slsedp.162}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.162/} }
TY - JOUR AU - Giovanni Forni TI - Defects in homogenization theory JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2022-2023 SP - 1 EP - 17 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.162/ DO - 10.5802/slsedp.162 LA - en ID - SLSEDP_2022-2023____A6_0 ER -
%0 Journal Article %A Giovanni Forni %T Defects in homogenization theory %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2022-2023 %P 1-17 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.162/ %R 10.5802/slsedp.162 %G en %F SLSEDP_2022-2023____A6_0
Giovanni Forni. Defects in homogenization theory. Séminaire Laurent Schwartz — EDP et applications (2022-2023), Talk no. 11, 17 p. doi : 10.5802/slsedp.162. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.162/
[AFK15] A. Avila, B. Fayad and A. Kocsard, On manifolds supporting distributionally uniquely ergodic diffeomorphisms, J. Differential Geom. 99(2) (2015), 191-213. | DOI | MR | Zbl
[AK11] A. Avila and A. Kocsard, Cohomological equations and invariant distributions for minimal circle diffeomorphisms, Duke Math. J. 158 (2011), no. 3, 501–536. | DOI | MR | Zbl
[AV07] A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math. 198 (2007), 1–56. | DOI | MR | Zbl
[BDG16] J. Bourgain, C. Demeter and L. Guth, Proof of the main conjecture in Vinogradov’s Mean Value Theorem for degrees higher than three, Ann. of Math. 184 (2) (2016), 633–682. | DOI | MR | Zbl
[BeRe99] J. Bernstein and A. Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. 150 (1999), 329–352. | DOI | MR | Zbl
[Bou17] J. Bourgain, On the Vinogradov mean value, Proc. Steklov Inst. Math. 296 (2017), 30–40. | DOI | Zbl
[Ch70] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian. In Gunning, Robert C. (ed.). Problems in analysis (Papers dedicated to Salomon Bochner, 1969). Princeton, N. J.: Princeton Univ. Press, 195–199. | DOI
[De69] P. Deligne, Formes modulaires et représentations -adiques, Séminaire Bourbaki 11, Exposé 355, 1968/69, 139–172. | DOI
[De74] —, La conjecture de Weil. I., Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273–307. | DOI
[Do98] D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147(2) (1998), 357–390. | DOI | MR | Zbl
[DS74] P. Deligne and J.-P. Serre, Formes modulaires de poids , Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530. | DOI | MR | Zbl
[F97] G. Forni, Solutions of the Cohomological Equation for Area-Preserving Flows on Compact Surfaces of Higher Genus, Ann. of Math. 146(2) (1997), 295–344. | DOI | MR | Zbl
[F02] —, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), no. 1, 1–103. | DOI | MR | Zbl
[F06] —, On the Lyapunov exponents of the Kontsevich–Zorich cocycle, Handbook of dynamical systems 1 (2006), 549–580. | DOI | Zbl
[F07] —, Sobolev regularity of solutions of the cohomological equation, Ergodic Theory Dynam. Systems 41 (2021), no. 3, 685 - 789.
[F08] —, On the Greenfield-Wallach and Katok conjectures, in Geometric and Probabilistic Structures in Dynamics (K. Burns, D. Dolgopyat and Ya. Pesin Editors). Contemporary Mathematics (Proceedings), pp. 197-215. American Mathematical Society, Providence RI, 2008. | DOI
[F11] —, A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle, J. Mod. Dynam. 5 (2011), no. 2, 355–395. | DOI | MR | Zbl
[F22] —, Twisted translation flows and effective weak mixing, J. Eur. Math. Soc. 24, no. 12 (2022), 4225–4276. | DOI | MR | Zbl
[F16] —, Effective equidistribution of nilflows and bounds on Weyl sums, in Dynamics and Analytic Number Theory, London Mathematical Society Lecture Note Series 437, (edited by D. Badziahin, A. Gorodnik, N. Peyerimhoff), Cambridge University Press, 2016. | DOI | Zbl
[FFT16] L. Flaminio, G. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geom. Funct. Anal. 26 (5),1359–1448. | DOI | MR | Zbl
[FGL19] F. Faure, S. Gouëzel and E. Lanneau, Ruelle spectrum of linear pseudo-Anosov maps, J. Éc. polytech. Math. 6 (2019), 811–877. | DOI | MR | Zbl
[FK20] G. Forni, A. Kanigowski, Time-changes of Heisenberg nilflows, Astérisque 416 (2020), 253–299. | DOI | MR | Zbl
[FK21] —, Counterexamples to a rigidity conjecture. 2021. | arXiv
[FlaFo03] L. Flaminio and G. Forni, Invariant Distributions and Time Averages for Horocycle Flows, Duke Math. J., 119 (3) (2003), 465–526. | DOI | MR | Zbl
[FlaFo06] —, Equidistribution of nilflows and applications to theta sums, Ergodic Theory Dynam. Systems 26 (2) (2006), 409–433. | DOI | MR | Zbl
[FlaFo07] —, On the cohomological equation for nilflows, J. Mod. Dynam. 1 (1) (2007), 37–60. | DOI | MR | Zbl
[FlaFo23] —, Equidistribution of nilflows and bounds on Weyl sums. 2023. | arXiv
[FlaFoRH16] L. Flaminio, G. Forni, F. Rodriguez Hertz, Invariant distributions for homogeneous flows and affine transformations, J. Modern Dyn. 10 (2) (2016), 33–79. | DOI | MR | Zbl
[FRS08] F. Faure, N. Roy, J. Sjöstrand, A semiclassical approach for Anosov diffeomorphisms and Ruelle resonances, Open Math. J. 1 (2008), 35–81. | DOI | MR | Zbl
[FrU21] K. Frączek and C. Ulcigrai, On the asymptotic growth of Birkhoff integrals for locally Hamiltonian flows and ergodicity of their extensions. 2021. | arXiv
[GL19] P. Giulietti and C. Liverani, Parabolic dynamics and Anisotropic Banach spaces, J. Eur. Math. Soc. (JEMS) 21 (9) (2019), 2793–2858. Published online: 2019-05-20. | DOI | MR | Zbl
[Go81] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981), 523–548. | DOI | MR | Zbl
[GT12] B. Green, T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. 175 (2012), no. 2, 465–540. | DOI | MR | Zbl
[He79] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. Inst. Hautes Études Sci. 49 (1979) 5–233. | DOI | Zbl
[Hel70] S. Helgason, Group representations and symmetric spaces, Actes, Congrès Intern. Math., 1970. Tome 2, p. 313–319.
[Ka01] A. B. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, In collaboration with E. A. Robinson, Jr., pp. 107–173. | DOI | Zbl
[Ka03] —, Combinatorial constructions in ergodic theory and dynamics, University Lecture Series, vol. 30, American Mathematical Society, Providence, RI, 2003. | DOI | Zbl
[Kha18] K. Khanin, Renormalization and Rigidity, Proc. Int. Cong. of Math. 2018, Rio de Janeiro, Vol. 3,1991–2012.
[KK96] A. B. Katok and A. Kononenko, Cocycles’ stability for partially hyperbolic systems, Math. Res. Lett. 3, no. 2 (1996), 191–210. | DOI | MR | Zbl
[Ko09] A. Kocsard, Cohomologically rigid vector fields: the Katok conjecture in dimension , Ann. Inst. H. Poincaré Anal. Non Linéaire 26.4 (2009), 1165–1182. | DOI | MR | Zbl
[Li04] C. Liverani, On contact Anosov flows, Ann. of Math. (2) 159(3) (2004), 1275–1312. | DOI | MR | Zbl
[Liv71] A. Livsic, Homology properties of Y-systems, Math. Notes USSR Acad. Sci. 10(1971), 758-763. | DOI
[LMM86] R. de la Llave, J. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation, Ann. of Math. 123 (1986), 537-611. | DOI | MR | Zbl
[LMW23] E. Lindenstrauss, A. Mohammadi and Zhiren Wang, Effective equidistribution for some one parameter unipotent flows. 2022. | arXiv
[Ma92] H. Masur, Hausdorff dimension of the set of non-ergodic foliations of a quadratic differential, Duke Math. J. 66(3) (1992), 387–442. | DOI | MR | Zbl
[MMY05] S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc. 18 (4) (2005), 823–872. | DOI | MR | Zbl
[Mt09] S. Matsumoto, The parameter rigid flows on oriented 3-manifolds, Contemporary Mathematics 498. Foliations, Geometry, and Topology: Paul Schweitzer Festschrift (ed. N. C. Saldanha et al.) American Math. Soc. 2009, 135–139. | DOI
[MY16] S. Marmi and J.-C. Yoccoz, Hölder Regularity of the Solutions of the Cohomological Equation for Roth Type Interval Exchange Maps, Comm. Math. Phys. 344 (1) (2016), 117–139. | DOI | Zbl
[Ra90] M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165, no. 3-4 (1990), 229–309. | DOI | MR | Zbl
[Ra91a] —, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134, no. 3 (1991), 545–607. | DOI | MR | Zbl
[Ra91b] —, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63, no. 1 (1991), 235–280. | DOI | MR | Zbl
[RHRH06] F. Rodriguez Hertz and J. Rodriguez Hertz, Cohomology free systems and the first Betti number, Discrete Contin. Dynam. Systems 15 (2006), 193–196. | DOI | MR | Zbl
[SU15] P. Sarnak and A. Ubis. The horocycle flow at prime times, J. Math. Pures Appl. (9) 103 (2) (2015), 575–618. | DOI | MR | Zbl
[Tau07] C. H. Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (4) (2007), 2117–2202. | DOI | MR | Zbl
[TaVi15] J. Tanis and P. Vishe, Uniform Bounds for Period Integrals and Sparse Equidistribution, Internat. Math. Res. Notices 2015, Issue 24 (2015), 13728–13756. | DOI | MR | Zbl
[Vee86] W. Veech, Periodic points and invariant pseudomeasures for toral endomorphisms, Ergodic Theory Dynam. Systems 6, no. 3 (1986), 449–473. | DOI | MR | Zbl
[Ven10] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. 172 (2010), 989–1094. | DOI | MR | Zbl
[Wa15] Z. J. Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups, Geom. Funct. Analysis 25 (6) (2015), 1956–2020. | DOI | MR | Zbl
[Wa] —, On the smooth rigidity of Diophantine linear skew-shifts, preprint.
[Wil13] A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, Astérisque, vol. 358, Société Mathématique de France, Paris, France, 2013, 75–165. | Zbl
[Wo18] T. D. Wooley, Nested efficient congruencing and relatives of Vinogradov’s mean value theorem, Proc. London Math. Soc. (3) 118 (4) (2018), 942–1016. | DOI | MR | Zbl
[Ya23] Lei Yang, Effective version of Ratner’s equidistribution theorem for . 2022. | arXiv
[Yo84] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. (4) 17 (1984), 333–359. | DOI | Zbl
Cited by Sources: