This note presents the concept of monotone solutions of mean field games master equations, in several cases. The first case that I treat is the one in which the underlying game has only a finite state space. The other are the case of a continuous state space and the so-called Hilbertian approach. Most of the results presented here come from the two papers [1, 2], except for results concerning the Hilbert space case and the case of general monotone operators which are new.
@article{SLSEDP_2021-2022____A8_0, author = {Charles Bertucci}, title = {On monotone solutions of mean field games master equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2021-2022}, doi = {10.5802/slsedp.153}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.153/} }
TY - JOUR AU - Charles Bertucci TI - On monotone solutions of mean field games master equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2021-2022 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.153/ DO - 10.5802/slsedp.153 LA - en ID - SLSEDP_2021-2022____A8_0 ER -
%0 Journal Article %A Charles Bertucci %T On monotone solutions of mean field games master equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2021-2022 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.153/ %R 10.5802/slsedp.153 %G en %F SLSEDP_2021-2022____A8_0
Charles Bertucci. On monotone solutions of mean field games master equations. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Talk no. 14, 13 p. doi : 10.5802/slsedp.153. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.153/
[1] Charles Bertucci. Monotone solutions for mean field games master equations: finite state space and optimal stopping. Journal de l’École polytechnique — Mathématiques, 8:1099–1132, 2021. | Zbl
[2] Charles Bertucci. Monotone solutions for mean field games master equations: continuous state space and common noise, 2021. | arXiv
[3] Charles Bertucci and Alekos Cecchin. Mean field games master equations: from discrete to continuous state space, 2022. Available at charles-bertucci@github.io.
[4] Charles Bertucci, Jean-Michel Lasry, and Pierre-Louis Lions. On Lipschitz solutions of mean field games master equations, 2022. Forthcoming.
[5] Pierre Cardaliaguet and Panagiotis Souganidis. Monotone solutions of the master equation for mean field games with idiosyncratic noise. SIAM Journal on Mathematical Analysis, 54(4):4198–4237, 2022. | DOI | MR | Zbl
[6] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field Games:(AMS-201), volume 201. Princeton University Press, 2019. | Zbl
[7] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007. | DOI | MR | Zbl
[8] Pierre-Louis Lions. Cours au College de France, 2011. www.college-de-france.fr.
[9] Charles Stegall. Optimization of functions on certain subsets of Banach spaces. Mathematische Annalen, 236(2):171–176, 1978. | DOI | MR | Zbl
[10] Charles Stegall. Optimization and differentiation in Banach spaces. Linear Algebra and Its Applications, 84:191–211, 1986. | DOI | MR | Zbl
Cited by Sources: