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ON MONOTONE SOLUTIONS OF MEAN FIELD GAMES
MASTER EQUATIONS

CHARLES BERTUCCI

Abstract. This note presents the concept of monotone solutions of mean field
games master equations, in several cases. The first case that I treat is the one
in which the underlying game has only a finite state space. The other are the
case of a continuous state space and the so-called Hilbertian approach. Most
of the results presented here come from the two papers [1, 2], except for results
concerning the Hilbert space case and the case of general monotone operators
which are new.
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1. Introduction

The study of mean field games (MFG in short) master equations is getting more
and more attention in the recent years. MFG are differential games involving
an infinite number of non atomic agents. These games are now a central piece
of the mathematical modeling toolbox. We do not elaborate too much on this.
The master equation is the partial differential equation (PDE in short) satisfied
by the value function of a MFG. This value is the function which associates to
a state of the game the value that the players are going to get when the game
starts from this state. Quite often, the state of the game is simply the time and
the measure describing the repartition of players. In general, such a concept of
value has no reason to be well defined since there is, in general, no guarantee

Séminaire Laurent-Schwartz — EDP et applications
Centre de mathématiques Laurent Schwartz, 2021-2022
Exposé no XIV, 1-13

XIV–1



that a particular outcome of the game can be selected. This problem of definition
usually translates as a creation of singularities at the level of the master equation.

The problem of solving MFG master equations in a general setting is by now
still an open problem. For quite some time, the most satisfying results on MFG
master equations were the one established in [8, 6]. Those results stated that
in the so-called monotone regime, under additional smoothness assumptions, a
theory of classical solutions of master equations can be established. The mono-
tone regime is a type of assumptions under which the underlying game has an
adversarial structure which is strong enough so that a unique Nash equilibrium
exists. Because of this uniqueness result, we can define a notion of value and
verify that, when it is smooth, it is indeed a solution of the master equation.
Other regimes have been studied in the literature and we refer to the references
in [1, 2] for more details on these regimes.

In these notes, we are concerned with proposing a weak notion of solution for
master equations, in a monotone regime. Hence, we want to weaken the regularity
assumptions on the datas, that were needed in [6] for instance, while preserving the
key structural assumptions on the master equations. This notion was introduced
in [1, 2]. It has been used in [5] to study more singular master equations and in
[3] to study the convergence of a discretized master equation.

2. Mean field games master equations and monotonicity

We present here several models of MFG master equations, without detailing the
underlying MFG they model.

2.1. Master equations in finite state space. The typical example of a MFG
master equation in finite state space is the PDE satisfied by U : [0,∞)× O → Rd

(2.1) ∂tU + (F (x, U) · ∇x)U = G(x, U), in (0,∞)× O,

(2.2) U |t=0 = U0 in O,

where the data of the problem are F,G : O × Rd → Rd and U0 : O → Rd. The
previous PDE is set on O which is assumed to be a convex compact set of Rd, and
to be the closure of its interior. We shall assume that O satisfies almost everywhere
the following stability assumption

(2.3) ∀x ∈ ∂O, ⟨F (x, p), η(x)⟩ ≥ 0,

where η(x) is the unit outward vector to ∂O at x, and the previous inequality is
asked only when it is well defined. The notation ⟨, ⟩ stands for the usual scalar
product of Rd. In this context, we say that the monotone regime is in force when

Hypothesis 1. The function (G,F ) : O × Rd → R2d is monotone. The function
U0 : O → Rd is monotone.
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Recall that a function f : Ω ⊂ Rd → Rd is called monotone when for all x, y ∈ Ω,

(2.4) ⟨f(x)− f(y), x− y⟩ ≥ 0.

More general type of equations are also of interest, especially ones involving non-
local terms, but we refer to [1] for more details on this. Recall that this type of
master equations is studied for MFG in which the state space of the players is
finite.

2.2. Master equations on the space of probability measure. When the
state space of the player is infinite, the typical form of the master equation is

(2.5) ∂tU − σ∆xU +H(x,∇xU)− ⟨∇mU(x,m, ·), div (DpH(·,∇U(·,m))m)⟩
− σ ⟨∇mU(x,m, ·),∆m⟩ = f(x,m), in (0,∞)× Td × P(Td)

(2.6) U(0, x,m) = U0(x,m) in Td × P(Td).

In the previous, Td stands for the d dimensional torus, P(Td) for the set of probabil-
ity measures on it, σ > 0, H : Td×Rd → R and f : P(Td) → (Td → R) are the data
of the problem. The solution U of this PDE is a function [0,∞)×Td×P(Td) → R
and ⟨, ⟩ denotes here the extension of the L2(Td,R) scalar product.

The derivative with respect to the measure argument is defined as usual for a
smooth function ϕ : P(Td) → R by

(2.7) ∀x ∈ Td,∇mϕ(x) = lim
θ→0

ϕ((1− θ)m+ θδx)− ϕ(m)

θ
,

where δx is the Dirac mass at x ∈ Td. In particular, δϕ
δm

: Td → R.
In the context of (2.5), we are in the monotone regime when

Hypothesis 2. The Hamiltonian H is convex in its second argument and f is a
strongly monotone operator for the duality product ⟨, ⟩ in the sense that

(2.8)
∀µ, ν ∈ P(Td), ⟨f(µ)− f(ν), µ− ν⟩ ≥ 0,

⟨f(µ)− f(ν), µ− ν⟩ = 0 ⇒ f(µ) = f(ν).

Even if the link between this setting and the previous might not be obvious at
first, (2.1) and (2.5) are somehow of the same nature. Indeed, if we define the
operators G and F by

(2.9)
G(m,φ) = f(m) + σ∆φ−H(·,∇xφ),

F(m,φ) = −σ∆m− div(DpH(·,∇xφ)m),

then (2.5) can be rewritten as

(2.10) ∂tU(t,m) + ⟨F(m,U),∇m⟩U = G(m,U) in (0,∞)× P(Td).

In the previous equation, U is seen as U : [0,∞)×P(Td) → (Td → R). Finally, let
me remark that stability conditions such as (2.3) are automatically verified here.
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2.3. Master equations on Hilbert spaces. The last example of master equa-
tions we present here are the ones which are posed on a Hilbert space. This
approach was introduced by P.-L. Lions in [8] to develop another framework to
study (2.5), namely but not only, in the case σ = 0. His idea was, forgetting
the time dependence, to lift an element from P(Td) → (Td → Rd) to a one from
L2(Ω,Rd) → L2(Ω,Rd), where (Ω,A,P) is a standard probability space. Consid-
ering ϕ : P(Td) → (Td → Rd), its lifting V is defined by

(2.11) ∀X ∈ L2, V (X) = ϕ(π(X),L(π(X))),

where L(X) ∈ P(Td) is the law of X and π(X) is a Td random variable such that
π(X) = X modulo the quotient Rd/Zd. For simplicity I now denoteH = L2(Ω,Rd).

In the case σ = 0 and ∇xH = 0, the natural lifting of (2.5) is established by
considering the lifting V of ∇xU , if U is a solution of (2.5), and writing the PDE
satisfied by V

∂tV (t,X) + ⟨DpH(V (t,X)),∇⟩V (t,X)
(2.12)

= ∇xf(X,L(X)) =: A(X), in (0,∞)×H,
V |t=0(X) = ∇xU0(X,L(X)) =: U0(X) in H.(2.13)

In the previous equation, ⟨, ⟩ stands for the usual scalar product of H. In this last
situation, we are in the monotone regime if

Hypothesis 3. The Hamiltonian H is convex and A and U0 are monotone.

Note that the monotone regime holds for different set of assumptions for (2.5)
and (2.12), even if they somehow model the same problem.

3. Monotone solutions of master equations

In this section, I introduce briefly the notion of monotone solution and present
results of uniqueness and stability of such solutions. I shall not be concerned with
result of existence here, and refer the reader to [1, 2] for such questions.

3.1. Derivation of a notion of weak solutions. One of the main contributions
of J.-M. Lasry and P.-L. Lions in [7] was to identify structural assumptions (the
monotone regimes) under which a concept of value can be defined for MFG. In
terms of master equations, this translates into the fact that, in all the regimes
mentioned above, the master equations propagates the monotonicity of the initial
condition. We now sketch the main idea of the proof of this statement, on the
case of (2.1).

Proposition 3.1. Under Hypothesis 1, there exists at most one smooth solution
U of (2.1). If it exists, it satisfies U(t) : O → Rd is monotone for all t ≥ 0.

Proof. Consider two such solutions U and V . Let us define W : [0,∞)× O2 → R
by

(3.1) W (t, x, y) = ⟨U(t, x)− V (t, y), x− y⟩.
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Let me remark that

(3.2) ∇xW (t, x, y) = U(t, x)− V (t, y) + ⟨DxU(t, x), x− y⟩,
and that the analogous relation holds for ∇yW . From the previous relation and
the fact that U and V are smooth solutions of (2.1), I obtain that, on (0,∞)×O2,

(3.3) ∂tW + ⟨F (x, U),∇xW ⟩+ ⟨F (y, V ),∇yW ⟩
= ⟨G(x, U)−G(y, V ), x− y⟩+ ⟨F (x, U)− F (y, V ), U − V ⟩.

From Hypothesis 1, I can deduce that

(3.4)
∂tW + ⟨F (x, U),∇xW ⟩+ ⟨F (y, V ),∇yW ⟩ ≥ 0,

W |t=0 ≥ 0.

Hence using a comparison principle, which I do not detail here1, I deduce that
W ≥ 0 for all time. Take now x in the interior of O and ϵ > 0 such that
x+ ϵB1(0) ⊂ O. It then follows that

(3.5) −ϵ⟨U(t, x)− V (t, x+ ϵy), y⟩ = W (t, x, x+ ϵy) ≥ 0.

Dividing by ϵ and letting ϵ go to 0, we deduce that U(t, x) = V (t, x), from the
continuity of U and V , I finally deduce that U = V , and thus that U(t) is monotone
(from the non-negativity of W ) for all t ≥ 0. □
Remark 3.1. For the previous result, the proof is obviously more important
than the statement, as for regular solutions, Hypothesis 1 is not needed. See for
instance [4] for more details on this question.

This elementary proof illustrates the fact that Hypothesis 1 leads to both the
propagation of monotonicity and the uniqueness of solutions of (2.1).

The fundamental idea behind the notion of monotone solution, is that very few
regularity was needed on the solutions U and V in the previous proof. Indeed, if
regularity is needed for W to be a classical solution of (3.3), fewer regularity is
sufficient to establish a comparison principle, which is the main argument of the
proof. Let me recall that this observation is the main idea behind the notion of
viscosity solution.

Hence, in the monotone regime, the regularity needed to maintain the previous
proof of uniqueness is lower semi continuity of W with respect to both x and y.
A priori, at the level of U (and V ), continuity has to be required in order to
guarantee the lower semi continuity of W .

Now that the question of regularity has been treated, it remains to understand
in which sense a continuous function can be a solution of (2.1). Observe that
in the previous proof, the equation was only used at points of minimum of W .
Moreover, at these points of minima, taking ∇xW = 0 in (3.2) allows to replace
⟨DxU(t, x), x−y⟩ with U−V . Thus, we only need to know an information on (2.1),
once the scalar product with x− y has been taken, at points of minima of W , and

1A more general result is proven below.
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at these points we can replace the terms involving DxU with terms which do not
involve derivative. This leads to the

Definition 1. A continuous function U : [0,∞)×O → Rd is a monotone solution
of (2.1) if: for any T > 0, V ∈ Rd, y ∈ O, θ : [0, T ] → R smooth function and
(t0, x0) point of strict minimum of

(3.6)
y[0, T ]× O → R,

(t, x) → ⟨U(t, x)− V, x− y⟩ − θ(t),

the following holds

(3.7)
dθ

dt
(t0) ≥ ⟨G(x0, U(t0, x0)), x0 − y⟩+ ⟨F (x0, U(t0, x0)), U(t0, x0)− V ⟩.

Remark 3.2. The way I treat the time derivative is the usual way to deal with
this kind of term in the viscosity solution theory.

Remark 3.3. I only ask for information at points of strict minimum for reasons
of stability that will be more apparent later on.

Remark 3.4. We only have an inequality and not an equality because the mini-
mum can be reached on the boundary of O.

3.2. Monotone solutions for master equations on infinite dimensional
spaces. A remarkable feature of the previous notion of solution, is that it can be
easily adapted to infinite dimensional cases, as show the following definitions.

Definition 2. A continuous function U : [0,∞)×Td×P(Td) → R, C2 in its second
argument, is a monotone solution of (2.5) if: for any T > 0, ϕ ∈ C2, µ ∈ M(Td), θ :
[0, T ] → R smooth function and (t0,m0) point of strict minimum of

(3.8)
y[0, T ]× P(Td) → R,

(t,m) → ⟨U(t, ·,m)− ϕ,m− µ⟩ − θ(t),

the following holds

(3.9)
dθ

dt
(t0) ≥ ⟨G(m0, U(t0,m0)),m0 − µ⟩+ ⟨F(m0, U(t0,m0)), U(t0,m0)− ϕ⟩.

Let me insist on the fact that in this setting, the regularity of U with respect
to x is necessary. Because we are here in the case σ > 0, it is in general true and
thus does not raise too much issue. In some sense we are seeing the value function
as U : [0,∞) × P(Td) → C2(Td). Moreover, the ”test” function ϕ also has to be
assumed C2 here.

Remark 3.5. Note that in the Definition, I take ν ∈ M(Td) and not only ν ∈
P(Td). The reason why shall be make precise in the proof of the uniqueness result
below.

For the case of (2.12), we provide a slightly different notion of solution, to allow
to establish the forthcoming results more easily.
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Definition 3. A continuous function U : [0,∞)×H → H is a monotone solution
of (2.12) if: for any T > 0, V ∈ H, Y, Z ∈ H, θ : [0, T ] → R smooth function and
(t0, X0) point of strict minimum of

(3.10)
y[0, T ]×H → R,

(t,X) → ⟨U(t,X)− V,X − Y ⟩ − θ(t)− ⟨Z,X⟩,
the following holds

dθ

dt
(t0) + ⟨DpH(U(t0, X0)), Z⟩

≥ ⟨A(X0), X0 − Y ⟩+ ⟨DpH(U(t0, X0)), U(t0, X0)− V ⟩.
Remark that the question of regularity seems simpler in this Hilbertian ap-

proach.

Remark 3.6. In this case, I introduce a more restrictive definition than the pre-
vious ones by the means of the term Z. The previous definitions correspond to
the case Z = 0. This addition shall be helpful later on.

A similar notion of monotone solution was introduced in [5] in a different con-
text. In this paper, the authors use what we could call a semi-Hilbertian approach
in which U : Td × P(Td) → R is lifted to V : Td ×H → R.

3.3. Uniqueness of monotone solutions. Since the definition of monotone so-
lutions is based on a proof of uniqueness, their uniqueness in the monotone regime
should be no surprise to the reader. We can provide the following results of unique-
ness for the case of (2.5) and (2.12). The case of (2.1) can be treated in a similar
fashion.

Theorem 1. Under Hypothesis 2, there exists at most one monotone solution of
(2.5) in the sense of Definition 2.

I reproduce here the proof of [2].

Proof. Let us consider U and V two such solutions. We define W by

W (t, s, µ, ν) = ⟨U(t, ·, µ)− V (s, ·, ν), µ− ν⟩

:=

∫

Td

U(t, x, µ)− V (s, x, ν)(µ− ν)(dx).
(3.11)

We want to prove thatW (t, t, µ, ν) ≥ 0 for all t ≥ 0, µ, ν ∈ P(Td). Assume it is not
the case, hence there exists t∗, δ, ϵ̄ > 0, such that for all ϵ ∈ (0, ϵ̄), α > 0, ϕ, ψ ∈ C2

such that ∥ϕ∥2 + ∥ψ∥2 ≤ ϵ and γ1, γ2 ∈ ( ϵ̄
2
, ϵ̄),

(3.12) inf
t,s∈[0,t∗]
µ,ν∈P(Td)

{
W (t, s, µ, ν) + ⟨ϕ, µ⟩+ ⟨ψ, ν⟩+ 1

2α
(t− s)2 + γ1t+ γ2s

}
≤ −δ.

From Stegall’s Lemma [9, 10], we know that there exists (for any value of α) ϕ, ψ, γ1
and γ2 such that (t, s, µ, ν) → W (t, s, µ, ν)+ ⟨ϕ, µ⟩+ ⟨ψ, ν⟩+ 1

2α
(t− s)2+γ1t+γ2s

has a strict minimum on [0, t∗]2 × P(Td)2 at (t0, s0, µ0, s0).
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We assume first that t0 > 0 and s0 > 0. Using the fact that U is a monotone
solution of (2.5) we obtain that

(3.13)

−γ1 −
t0 − s0
α

+ ⟨−σ∆U(µ0) +H(·,∇xU), µ0 − ν0⟩ ≥ ⟨f(·, µ0), µ0 − ν0⟩
− ⟨U(t0, µ0)− V (s0, ν0) + ϕ, div(DpH(∇xU)µ0)⟩
− σ⟨∆(U(t0, µ0)− V (s0, ν0) + ϕ), µ0⟩,

and similarly for V :

(3.14) − γ2 −
s0 − t0
α

+ ⟨−σ∆V (s0, ν0) +H(·,∇xV ), ν0 − µ0⟩
≥ ⟨f(·, ν0), ν0 − µ0⟩ − ⟨V (s0, ν0)− U(t0, µ0) + ϕ, div(DpH(∇xV )ν0)⟩

− σ⟨∆(V (s0, ν0)− U(t0, µ0) + ϕ), ν0⟩.
Summing the two previous relations, using the monotonicity of f and the convexity
of H, we deduce that

(3.15) − γ1 − γ2

≥ −⟨ϕ, div(DpH(∇xU)µ0)⟩ − σ⟨∆ψ, ν0⟩ − ⟨ψ, div(DpH(∇xV )ν0)⟩ − σ⟨∆ϕ, µ0⟩.
The previous relation is a contradiction (provided that ϵ had been chosen suffi-
ciently small compared to ϵ̄).

Let us now turn to the case t0 = 0 (the case s0 = 0 being treated in exactly
the same fashion). By construction s0 satisfies |s0 − t0| ≤ C

√
α for some C > 0

independent of ϵ. Thus choosing α > 0 sufficiently small, we easily manage to
contradict (3.12).

Hence we have proven that W (t, t, µ, ν) ≥ 0 for t ≥ 0, µ, ν ∈ P(Td). Making the
same sort of computation as the ones at the end of the proof of Proposition 3.1,
we obtain that there exists c : [0,∞) × P(Td) → R such that V = U − c. Hence,
in this case, the non-negativity of W do not exactly yields the equality between
U and V . To obtain such an equality, we have to use the strong monotonicity of f .

Assume that there exists t∗, ν∗ such that c(t∗, ν∗) = −δ0 < 0 and consider
a non-negative non-zero measure ρ ∈ M(Td). Because the initial condition is
satisfied for both U and V , we know that t∗ > 0. Furthermore, from Stegall’s
Lemma, we know that for any ϵ > 0 there exists t0, δ, ϵ̄ > 0, such that for all
ϵ′ ∈ (0, ϵ̄), α > 0, ϕ, ψ ∈ C2 such that ∥ϕ∥2 + ∥ψ∥2 ≤ ϵ′ and γ1, γ2 ∈ (ϵ̄/2, ϵ̄),

(3.16) inf
t,s∈[0,t0]
µ,ν∈P(Td)

{
⟨U(t, µ)− V (s, ν), µ− ν + ϵρ⟩+ ⟨ϕ, µ⟩+ ⟨ψ, ν⟩+

+
1

2α
(t− s)2 + γ1t+ γ2s

}
≤ −ϵδ0/2.

and the infimum is attained at a unique point (tϵ, sϵ, µϵ, νϵ). Moreover, we can
choose ϵ̄ such that ϵ̄/ϵ → κ > 0 as ϵ → 0. Proceeding as we did in the first part
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of the proof in the case sϵ, tϵ > 0 for almost all ϵ > 0, we arrive at the relation

(3.17) −γ1 − γ2 ≥ ⟨f(µϵ)− f(νϵ), µϵ − νϵ + ϵρ⟩+ o(ϵ).

Letting ϵ→ 0, we deduce that lim sup⟨f(µϵ)−f(νϵ), µϵ−νϵ⟩ ≤ 0. Hence, using the
strong monotonicity of f , we deduce that, extracting a subsequence if necessary,
(µϵ)ϵ and (νϵ)ϵ>0 converges toward the same limit. Hence, using this information
in (3.17), we arrive at a contradiction. The case where either sϵ or tϵ is equal to 0
for sufficiently many ϵ > 0 can be treated in a similar way. Thus we have proved
that c ≥ 0 and thus by symmetry that U = V . □

Remark 3.7. The use of Stegall’s Lemma is fundamental in the previous proof.
This is mainly because we are only asking information at points of strict minimum
in the definitions of monotone solutions. Creating those points of strict minimum
is in general not trivial and need the use of Stegall’s Lemma. To be complete, let
me state that in the previous proof, we did not exactly use the results from Stegall
but rather an adaptation which is proved in [2].

Theorem 2. Under Hypothesis 3, there exists at most one bounded monotone
solution of (2.12).

Proof. Consider two solutions U and V and assume that they are not equal. Hence
there exists δ > 0, T > 0 such that for any β ≥ 0

(3.18) inf
s,t≤T
X,Y ∈H

⟨U(t,X)− V (s, Y ), X − Y ⟩+ β(t− s)2 < −δ.

From this we deduce that for α, κ > 0 (independently) sufficiently small, for any
γ1, γ2 ∈ (κ/2, κ),

(3.19) inf
s,t≤T
X,Y ∈H

⟨U(t,X)−V (s, Y ), X−Y ⟩+β(t−s)2+α(|X|2+|Y |2)+γ1t+γ2s < −δ.

Moreover from Stegall’s Lemma, for any ϵ > 0, there exists ξ, ξ′ ∈ H, η, η′ > 0,
|ξ|+ |ξ′|+ η + η′ ≤ ϵ such that

(3.20) (t, s,X, Y ) → ⟨U(t,X)− V (s, Y ), X − Y ⟩+ β(t− s)2 + α(|X|2 + |Y |2)
+ (γ1 + η)t+ (γ2 + η′)s+ ⟨ξ,X⟩+ ⟨ξ′, Y ⟩

has a strict minimum on [0, T ]2 ×H2 at some point (t0, s0, X0, Y0). This is mainly
due to the fact that, since U and V are bounded, and there are quadratic terms,
the infimum of the previous function can be approximated by only considering
points in a bounded set.

Assume first that t0, s0 > 0. Using the fact that U is a monotone solution
of (2.12), we obtain

(3.21) − γ1 + η + ⟨DpH(U(t0, X0)), 2αX0 + ξ⟩
≥ ⟨A(X0), X0 − Y0⟩+ ⟨DpH(U(t0, X0)), U(t0, X0)− V (s0, Y0)⟩.
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The same relation for V reads

(3.22) − γ2 + η′ + ⟨DpH(V (s0, Y0)), 2αY0 + ξ′⟩
≥ ⟨A(Y0), Y0 −X0⟩+ ⟨DpH(U(s0, Y0)), V (s0, Y0)− U(t0, X0)⟩.

Summing the two previous relation and using Hypothesis 3 yields

(3.23) − γ1 − γ2 + η + η′

≥ −⟨DpH(U(t0, X0)), 2αX0 + ξ⟩ − ⟨DpH(V (s0, Y0)), 2αY0 + ξ′⟩.
As usual in viscosity solutions estimate, α(|X0| + |Y0|) → 0 as α → 02. Hence,
using the boundness of U and V and setting α, ϵ→ 0, we obtain that

(3.24) −γ1 − γ2 ≥ −κ ≥ 0,

which is a contradiction. The cases t0 = 0 and s0 = 0 can be treated as in the
previous proof. Hence (t,X, Y ) → ⟨U(t,X)− V (t, Y ), X − Y ⟩ ≥ 0 from which we
deduce that U = V . □

The main difference with the previous proof is that, because H is not bounded,
one had to add the terms in α in order to guarantee that the points of (strict)
minimum indeed exist. The addition of those terms is the reason why I had to
reinforce the definition of monotone solution by adding the term Z in Definition 3.

3.4. Stability of monotone solutions. I now present a result of stability of
monotone solutions. I only focus on the case of (2.1) here, the other being similar.
One of the main interest of the following result is that it allows to obtain results
of existence of monotone solutions, as it is done in [1].

Theorem 3. Assume that there is a sequence (Gn, Fn)n≥0 converging locally uni-
formly toward (G,F ) : O × Rd → R2d. Assume that there is a sequence (Un)n≥0

of monotone solutions of (2.1) such that for any n ≥ 0, Un is the solution associ-
ated to (Gn, Fn), and that this sequence (Un)n≥0 converges uniformly toward some
function U . Then U is a monotone solution of (2.1).

Proof. Consider T > 0, V ∈ Rd, y ∈ O, a smooth function θ : [0, T ] → R and (t∗, x∗)
point of strict minimum of (t, x) → ⟨U(t, x) − V, x − y⟩ − θ(t) on [0, T ] × O. For
any n ≥ 0, thanks to Stegall’s Lemma, there exist δn > 0, ξn ∈ Rd, δn + |ξn| ≤ n−1

such that (t, x) → ⟨Un(t, x)− V, x− y⟩ − θ(t) + ⟨ξn, x⟩+ δnt has a strict minimum
on [0, T ]×O at some point (tn, xn). Because Un is a monotone solution of a certain
master equation, it follows that

(3.25)
dθ

dt
(tn)− δn

≥ ⟨Gn(xn, Un(tn, xn)), xn − y⟩+ ⟨Fn(xn, Un(tn, xn)), U(tn, xn)− V + ξn⟩.
Moreover, since (t∗, x∗) is a strict minimum of (t, x) → ⟨U(t, x)− V, x− y⟩ − θ(t)
on [0, T ]× O, we deduce that (tn, xn) → (t∗, x∗) as n → ∞. Hence passing to the
limit n→ ∞ in (3.25) yields the required result. □

2Observe that X0 and Y0 actually depends on α.
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Remark 3.8. Let me insist on the facts that: i) the fact that we only ask for
information at points of strict minimum was crucial, ii) no monotonicity is required
to obtain this stability result.

4. Extensions to general monotone operators

I end these notes with an extension of the previous notion of solution, in the
case of (2.1), to more singular operators. As the notion of monotone solution is
mainly based on the monotonicity assumed in Hypothesis 1, it is very tempting to
assume that F and G are only monotone operators, and not necessary functions.
Let me insist on the fact that there exist numerous applications in which this type
of master equations is at interest. The simplest examples are maybe the ones in
which the players of the MFG have some sort of singular actions, like in the case
of optimal stopping for example [1].

In the following, I assume that G,F : O × Rd ⇒ R2d, i.e. they are set valued
maps. In this context, we would still like to be able to talk about a solution of

(4.1) ∂tU + ⟨F (x, U),∇x⟩U = G(x, U)

in the sense that for any t, x ∈ (0,∞)× O, there exist

(A,B) ∈ (G(x, U(t, x)), F (x, U(t, x)))

such that

(4.2) ∂tU(t, x) + ⟨B,∇x⟩U(t, x) = A.

In particular this implies that U(t, x) has to be such that U(t, x) is in the domain
of (G,F ). The initial condition U0 is still assumed to be a function here. The
natural notion of monotone solution here is

Definition 4. A continuous function U : (0,∞)×O → Rd is a monotone solution
of (4.1), if

• For any (t, x) ∈ (0,∞)× O, (x, U(t, x)) ∈ Dom(G,F ).
• For any T > 0, V ∈ Rd, y ∈ O, θ : [0, T ] → R smooth function and (t0, x0)
point of strict minimum of

(4.3)
y[0, T ]× O → R,

(t, x) → ⟨U(t, x)− V, x− y⟩ − θ(t),

there exist (A,B) ∈ (G(x, U(t, x)), F (x, U(t, x))) such that

(4.4)
dθ

dt
(t0) ≥ ⟨A, x0 − y⟩+ ⟨B,U(t0, x0)− V ⟩.

• The initial condition holds.

The following result holds.

Theorem 4. Assume that (G,F ) is a monotone operator and that U0 is monotone,
then there exists at most one monotone solution of (4.1).

Proof. This proof is very similar to the previous ones hence I do not reproduce it
here. □
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A result of stability can also be established under some additional assumption.

Theorem 5. Assume that (Gn, Fn)n≥0 is a sequence of locally uniformly bounded
operators. That is, for any bounded set B of O × R, there exists a bounded set C
such that for any n ≥ 0, (Gn, Fn)(B) ⊂ C. Assume that the sequence (Gn, Fn)n≥0

converges in the sense of graphs toward (G,F ) : O×Rd ⇒ R2d. Assume that there
is a sequence (Un)n≥0 of monotone solutions of (4.1) such that for any n ≥ 0,
Un is the solution associated to (Gn, Fn), and that this sequence (Un)n≥0 converges
uniformly toward some function U . Then U is a monotone solution of (4.1).

Proof. The fact that (x, U(t, x)) ∈ Dom(G,F ) is immediate. Consider T > 0, V ∈
Rd, y ∈ O, a smooth function θ : [0, T ] → R and (t∗, x∗) point of strict minimum
of (t, x) → ⟨U(t, x) − V, x − y⟩ − θ(t) on [0, T ] × O. For any n ≥ 0, thanks to
Stegall’s Lemma, there exist δn > 0, ξn ∈ Rd, δn + |ξn| ≤ n−1 such that (t, x) →
⟨Un(t, x)−V, x−y⟩−θ(t)+⟨ξn, x⟩+δnt has a strict minimum on [0, T ]×O at some
point (tn, xn). Because Un is a monotone solution of a certain master equation, it
follows that there exists (An, Bn) ∈ (Gn, Fn)(xn, Un(tn, xn)) such that

(4.5)
dθ

dt
(tn)− δn ≥ ⟨An, xn − y⟩+ ⟨Bn, Un, (tn, xn)− V + ξn⟩.

Since (t∗, x∗) is a strict minimum of (t, x) → ⟨U(t, x)−V, x−y⟩−θ(t) on [0, T ]×O,
we deduce that (tn, xn) → (t∗, x∗) as n → ∞. Moreover, because of the assump-
tion we made on the boundedness of (Gn, Fn)n≥0, (An, Bn)n≥0 is a bounded se-
quence. Hence, extracting a subsequence if necessary, it converges toward some
limit (A∗, B∗). Because of the convergence of (Gn, Fn)n≥0 toward (G,F ) in the
sense of graphs, we deduce that (A∗, B∗) ∈ (G,F )(x∗, U(t∗, x∗)). Passing to the
limit in (4.5) yields

(4.6)
dθ

dt
(t∗)− δn ≥ ⟨A∗, x∗ − y⟩+ ⟨B∗, U(t∗, x∗)− V ⟩,

which proves the claim. □
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