We consider reaction-diffusion equations in the whole space and we are interested in the large-time dynamics of solutions ranging in the interval , with general unbounded initial support. Under the hypothesis of the existence of a traveling front connecting and with a positive speed, we discuss the existence of spreading speeds and spreading sets, which describe the large-time global shape of the level sets of the solutions. The spreading speed in any direction is expressed as a Freidlin-Gärtner type formula. This formula holds under general assumptions on the reaction and for solutions emanating from initial conditions with general unbounded support, whereas most of earlier results were concerned with more specific reactions and compactly supported or almost-planar initial conditions. We then investigate the local properties of the level sets at large time. Some flattening properties of the level sets of the solutions, if initially supported on subgraphs, will be presented. We also investigate the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP equations, we state some asymptotic local one-dimensional and monotonicity symmetry properties for the elements of the -limit set of the solutions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. Lastly, we present some logarithmic-in-time estimates of the lag of the position of the solutions with respect to that of a planar front with minimal speed, for initial conditions which are supported on subgraphs with logarithmic growth at infinity. Some related conjectures and open problems are also listed.
@article{SLSEDP_2021-2022____A5_0, author = {Fran\c{c}ois Hamel and Luca Rossi}, title = {Spreading sets and one-dimensional symmetry for reaction-diffusion equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--25}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2021-2022}, doi = {10.5802/slsedp.150}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.150/} }
TY - JOUR AU - François Hamel AU - Luca Rossi TI - Spreading sets and one-dimensional symmetry for reaction-diffusion equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2021-2022 SP - 1 EP - 25 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.150/ DO - 10.5802/slsedp.150 LA - en ID - SLSEDP_2021-2022____A5_0 ER -
%0 Journal Article %A François Hamel %A Luca Rossi %T Spreading sets and one-dimensional symmetry for reaction-diffusion equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2021-2022 %P 1-25 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.150/ %R 10.5802/slsedp.150 %G en %F SLSEDP_2021-2022____A5_0
François Hamel; Luca Rossi. Spreading sets and one-dimensional symmetry for reaction-diffusion equations. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Talk no. 11, 25 p. doi : 10.5802/slsedp.150. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.150/
[1] M. Alfaro and T. Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Netw. Heterog. Media, 11:369–393, 2016. | DOI | MR | Zbl
[2] D. G. Aronson and H. F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 30:33–76, 1978. | DOI | MR | Zbl
[3] G. Barles, L. C. Evans, and P. E. Souganidis. Wavefront propagation for reaction-diffusion systems of partial diffusion equations. Duke Math. J., 61:835–859, 1990. | DOI | MR
[4] H. Berestycki and F. Hamel. Front propagation in periodic excitable media. Comm. Pure Appl. Math., 55:949–1032, 2002. | DOI | MR | Zbl
[5] H. Berestycki and F. Hamel. Generalized travelling waves for reaction-diffusion equations. In Perspectives in nonlinear partial differential equations, volume 446 of Contemp. Math., pages 101–123, Amer. Math. Soc., Providence, RI, 2007. | DOI | Zbl
[6] H. Berestycki, F. Hamel, and G. Nadin. Asymptotic spreading in heterogeneous diffusive media. J. Funct. Anal., 255:2146–2189, 2008. | DOI | MR | Zbl
[7] H. Berestycki, F. Hamel, and N. Nadirashvili. The speed of propagation for KPP type problems. I. Periodic framework. J. Europ. Math. Soc., 7:173–213, 2005. | DOI | Zbl
[8] H. Berestycki and G. Nadin. Asymptotic spreading for general heterogeneous Fisher-KPP type equations. Memoirs Amer. Math. Soc., forthcoming.
[9] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves, volume 44 of Memoirs Amer. Math. Soc., 1983. | DOI | MR | Zbl
[10] H. J. Brascamp and E. H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., 22:366–389, 1976. | DOI | Zbl
[11] E. De Giorgi. Convergence problems for functionals and operators. In Proc. International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pages 131–188. Pitagora, Bologna, 1979.
[12] Y. Du and H. Matano. Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Europ. Math. Soc., 12:279–312, 2010. | DOI | Zbl
[13] Y. Du and H. Matano. Radial terrace solutions and propagation profile of multistable reaction-diffusion equations over , 2017. | arXiv
[14] Y. Du and P. Poláčik. Locally uniform convergence to an equilibrium for nonlinear parabolic equations on . Indiana Univ. Math. J., 64:787–824, 2015. | DOI | MR | Zbl
[15] A. Ducrot. On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly supported initial data. Nonlinearity, 28:1043–1076, 2015. | DOI | MR | Zbl
[16] A. Ducrot, T. Giletti, and H. Matano. Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations. Trans. Amer. Math. Soc., 366:5541–5566, 2014. | DOI | MR | Zbl
[17] L. C. Evans and P. E. Souganidis. A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J., 38:141–172, 1989. | DOI | Zbl
[18] P. C. Fife and J. B. McLeod. The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal., 65:335–361, 1977. | DOI | MR | Zbl
[19] R.A. Fisher. The advance of advantageous genes. Ann. Eugenics, 7:335–369, 1937. | DOI | Zbl
[20] M. Freidlin and J. Gärtner. On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl., 20:1282–1286, 1979. | Zbl
[21] J. Gärtner. Location of wave fronts for the multi-dimensional KPP equation and Brownian first exit densities. Math. Nachr., 105:317–351, 1982. | DOI
[22] T. Giletti and L. Rossi. Pulsating solutions for multidimensional bistable and multistable equations. Math. Ann., 378:1555–1611, 2020. | DOI | MR | Zbl
[23] H. Guo. Propagating speeds of bistable transition fronts in spatially periodic media. Calc. Var. Part. Diff. Equations, 57:47, 2018. | DOI | MR | Zbl
[24] F. Hamel, R. Monneau, and J.-M. Roquejoffre. Existence and qualitative properties of multidimensional conical bistable fronts. Disc. Cont. Dyn. Syst. A, 13:1069–1096, 2005. | DOI | MR | Zbl
[25] F. Hamel, R. Monneau, and J.-M. Roquejoffre. Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Disc. Cont. Dyn. Syst. A, 14:75–92, 2006. | DOI | MR | Zbl
[26] F. Hamel, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Heterog. Media, 8:275–289, 2013. | DOI | MR | Zbl
[27] F. Hamel and L. Rossi. Spreading speeds and spreading sets of reaction-diffusion equations. Preprint.
[28] F. Hamel and L. Rossi. Asymptotic one-dimensional symmetry for the Fisher-KPP equation. Preprint.
[29] F. Hamel and L. Rossi. Flattening and logarithmic lag of level sets in reaction-diffusion equations. In preparation.
[30] K. Ishige and P. Salani. Parabolic power concavity and parabolic boundary value problems. Math. Ann. 358:1091–1117, 2014. | DOI | MR | Zbl
[31] K. Ishige, P. Salani, and A. Takatsu. To logconcavity and beyond. Commun. Contemp. Math. 22: article no. 1950009 (17 pages), 2020. | DOI | MR | Zbl
[32] C. K. R. T. Jones. Spherically symmetric solutions of a reaction-diffusion equation. J. Diff. Equations, 49:142–169, 1983. | DOI | MR | Zbl
[33] A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou, Sér. Intern. A, 1:1-26, 1937.
[34] K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Diff. Equations, 59:44–70, 1985. | DOI | MR
[35] M. A. Lewis and P. Kareiva. Allee dynamics and the spread of invading organisms. Theo. Pop. Biol., 43:141-158, 1993. | DOI | Zbl
[36] X. Liang and H. Matano. Maximizing the spreading speed of KPP fronts in two-dimensional stratified media. Proc. London Math. Soc., 109:1137–1174, 2014. | DOI | MR | Zbl
[37] H. Matano and M. Nara. Large time behavior of disturbed planar fronts in the Allen-Cahn equation. J. Diff. Equations, 251:3522–3557, 2011. | DOI | MR | Zbl
[38] H. Matano, M. Nara, and M. Taniguchi. Stability of planar waves in the Allen-Cahn equation. Comm. Part. Diff. Equations, 34:976–1002, 2009. | DOI | MR | Zbl
[39] H. Matano and P. Poláčik. Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part I: A general quasiconvergence theorem and its consequences. Comm. Part. Diff. Equations, 41:785–811, 2016. | DOI | MR | Zbl
[40] H. Matano and P. Poláčik. Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part II: Generic nonlinearities. Comm. Part. Diff. Equations, 45:483–524, 2020. | DOI | MR | Zbl
[41] C. B. Muratov and X. Zhong. Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations. Nonlin. Diff. Equations Appl., 20:1519–1552, 2013. | DOI | MR | Zbl
[42] C. B. Muratov and X. Zhong. Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations. Disc. Cont. Dyn. Syst. A, 37:915–944, 2017. | DOI | MR | Zbl
[43] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations. J. Diff. Equations, 213:204–233, 2005. | DOI | MR | Zbl
[44] J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. Convergence to a single wave in the Fisher-KPP equation. Chinese Ann. Math. Ser. B (special issue in honour of H. Brezis), 38:629–646, 2017. | DOI | MR | Zbl
[45] P. Poláčik. Convergence and quasiconvergence properties of solutions of parabolic equations on the real line: an overview. In: Patterns of Dynamics, volume 205 of Springer Proc. Math. Stat., pages 172–183, Springer, 2017. | DOI
[46] P. Poláčik. Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations. SIAM J. Math. Anal., 49:3716–3740, 2017. | DOI | MR | Zbl
[47] P. Poláčik. Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on . Mem. Amer. Math. Soc., 264(1278):v+87, 2020. | DOI
[48] J.-M. Roquejoffre, L. Rossi, and V. Roussier-Michon. Sharp large time behaviour in -dimensional Fisher-KPP equations. Disc. Cont. Dyn. Syst. A, 39:7265–7290, 2019. | DOI | MR | Zbl
[49] J.-M. Roquejoffre and V. Roussier-Michon. Nontrivial large-time behaviour in bistable reaction-diffusion equations. Ann. Mat. Pura Appl., 188:207–233, 2009. | DOI | MR | Zbl
[50] J.-M. Roquejoffre and V. Roussier-Michon. Nontrivial dynamics beyond the logarithmic shift in two-dimensional Fisher-KPP equations. Nonlinearity, 31:3284–3307, 2018. | DOI | MR | Zbl
[51] L. Rossi. The Freidlin-Gärtner formula for general reaction terms. Adv. Math., 317:267–298, 2017. | DOI | Zbl
[52] L. Rossi. Symmetrization and anti-symmetrization in reaction-diffusion equations. Proc. Amer. Math. Soc., 145:2527–2537, 2017. | DOI | MR | Zbl
[53] V. Roussier. Stability of radially symmetric travelling waves in reaction-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 21:341–379, 2004. | DOI | MR | Zbl
[54] N. Shigesada, K. Kawasaki, and E. Teramoto. Traveling periodic waves in heterogeneous environments. Theor. Pop. Bio., 30:143–160, 1986. | DOI | MR | Zbl
[55] K. Uchiyama. The behavior of solutions of some semilinear diffusion equation for large time. J. Math. Kyoto Univ., 18:453-508, 1978. | DOI | Zbl
[56] K. Uchiyama. Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients. Arch. Ration. Mech. Anal., 90:291–311, 1985. | DOI | MR | Zbl
[57] H. F. Weinberger. On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol., 45:511–548, 2002. | DOI | MR | Zbl
[58] X. Xin. Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity. Indiana Univ. Math. J., 40:985–1008, 1991. | DOI | Zbl
[59] J. Xin. Analysis and modeling of front propagation in heterogeneous media. SIAM Review, 42:161–230, 2000. | DOI | MR | Zbl
[60] A. Zlatoš. Sharp transition between extinction and propagation of reaction. J. Amer. Math. Soc., 19:251-263, 2006. | DOI | MR | Zbl
Cited by Sources: