@article{SLSEDP_2021-2022____A6_0, author = {Chenmin Sun and Nikolay Tzvetkov and Weijun Xu}, title = {Universality results for a class of nonlinear wave equations and their {Gibbs} measures}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:15}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2021-2022}, doi = {10.5802/slsedp.151}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.151/} }
TY - JOUR AU - Chenmin Sun AU - Nikolay Tzvetkov AU - Weijun Xu TI - Universality results for a class of nonlinear wave equations and their Gibbs measures JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:15 PY - 2021-2022 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.151/ DO - 10.5802/slsedp.151 LA - en ID - SLSEDP_2021-2022____A6_0 ER -
%0 Journal Article %A Chenmin Sun %A Nikolay Tzvetkov %A Weijun Xu %T Universality results for a class of nonlinear wave equations and their Gibbs measures %J Séminaire Laurent Schwartz — EDP et applications %Z talk:15 %D 2021-2022 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.151/ %R 10.5802/slsedp.151 %G en %F SLSEDP_2021-2022____A6_0
Chenmin Sun; Nikolay Tzvetkov; Weijun Xu. Universality results for a class of nonlinear wave equations and their Gibbs measures. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Talk no. 15, 10 p. doi : 10.5802/slsedp.151. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.151/
[1] J. Bourgain, A. Bulut, Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball, J. Funct. Anal. 266 (2014) 2319–2340. | Zbl
[2] N. Burq, N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. 16 (2014), 1–30. | Zbl
[3] Y. Deng, A. Nahmod, H. Yue, Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two, 2019. | arXiv
[4] Y. Deng, A. Nahmod, H. Yue, Random tensors, propagation of randomness, and nonlinear dispersive equations, Inventiones mathematicae 228 (2022), 539–-686. | DOI | MR | Zbl
[5] D. Erhard, W. Xu, Weak universality of : polynomial potential and general smoothing mechanism, 2020. | arXiv
[6] M. Furlan, M. Gubinelli, Weak universality for a class of 3D stochastic reaction–diffusion models, Probab. Theory Related Fields 173 (2019), 1099–1164. | Zbl
[7] M. Gubinelli, H. Koch, T. Oh, Renormalisation of the two-dimensional stochastic nonlinear wave equations. Trans. Amer. Math. Soc. 370 (2018), no. 10, 7335–7359. | Zbl
[8] M. Hairer, J. Quastel, A class of growth models rescaling to KPZ, Forum Math. Pi 6 (2018), e3, 112 pp. | DOI | MR | Zbl
[9] M. Hairer, W. Xu, Large-scale behavior of three-dimensional continuous phase coexistence models, Comm. Pure Appl. Math. 71 (2018), no. 4, 688–746. | Zbl
[10] M. Hairer, W. Xu, Large-scale limit of interface fluctuation models, Ann. Probab. 47 (2019), no. 6, 3478-3550. | Zbl
[11] F. Merle, P. Raphael, I. Rodnianski, J. Szeftel, On blow up for the energy super critical defocusing non linear Schrödinger equations, Inventiones mathematicae 227 (2022), 247-–413. | Zbl
[12] H. Shen, W. Xu, Weak universality of dynamical : non-Gaussian noise, Stoch. PDE Anal. Comp. 6 (2018), 211–254. | Zbl
[13] C. Sun, N. Tzvetkov, W. Xu, Weak universality for a class of nonlinear wave equations, 2022. | arXiv
Cited by Sources: