We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.
Nous présentons des résultats récents sur la dérivation et l’analyse de deux modèles de type Hartree-Fock pour la polarisation du vide. Nous portons une attention particulière à la construction variationnelle d’un vide polarisé auto-consistent, et à la pertinence physique de notre construction non perturbative vis-à-vis de la description perturbative donnée par l’électrodynamique quantique.
@incollection{JEDP_2012____A4_0, author = {Philippe Gravejat and Christian Hainzl and Mathieu Lewin and \'Eric S\'er\'e}, title = {Two {Hartree-Fock} models for the vacuum polarization}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {4}, pages = {1--31}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2012}, doi = {10.5802/jedp.87}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.87/} }
TY - JOUR AU - Philippe Gravejat AU - Christian Hainzl AU - Mathieu Lewin AU - Éric Séré TI - Two Hartree-Fock models for the vacuum polarization JO - Journées équations aux dérivées partielles PY - 2012 SP - 1 EP - 31 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.87/ DO - 10.5802/jedp.87 LA - en ID - JEDP_2012____A4_0 ER -
%0 Journal Article %A Philippe Gravejat %A Christian Hainzl %A Mathieu Lewin %A Éric Séré %T Two Hartree-Fock models for the vacuum polarization %J Journées équations aux dérivées partielles %D 2012 %P 1-31 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.87/ %R 10.5802/jedp.87 %G en %F JEDP_2012____A4_0
Philippe Gravejat; Christian Hainzl; Mathieu Lewin; Éric Séré. Two Hartree-Fock models for the vacuum polarization. Journées équations aux dérivées partielles (2012), article no. 4, 31 p. doi : 10.5802/jedp.87. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.87/
[1] V. Bach; J.-M. Barbaroux; B. Helffer; H. Siedentop On the stability of the relativistic electron-positron field, Commun. Math. Phys., Volume 201 (1999) no. 2, pp. 445-460 | MR | Zbl
[2] P.M.S. Blackett; G.P.S. Occhialini Some photographs of the tracks of penetrating radiation, Proc. Roy. Soc. Lond. A, Volume 139 (1933), pp. 699-726
[3] H.B.G. Casimir On the attraction between two perfectly conducting plates, Proc. Kon. Nederland. Akad. Wetensch., Volume 51 (1948) no. 7, pp. 793-795 | Zbl
[4] H.B.G. Casimir; D. Polder The influence of retardation on the London-van der Waals forces, Phys. Rev., Volume 73 (1948) no. 4, pp. 360-372 | Zbl
[5] P. Chaix; D. Iracane From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B, Volume 22 (1989), pp. 3791-3814
[6] P. Chaix; D. Iracane; P.-L. Lions From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J. Phys. B, Volume 22 (1989), pp. 3815-3828
[7] P.A.M. Dirac The quantum theory of the electron, Proc. Roy. Soc. Lond. A, Volume 117 (1928), pp. 610-624
[8] P.A.M. Dirac The quantum theory of the electron. II, Proc. Roy. Soc. Lond. A, Volume 118 (1928), pp. 351-361
[9] P.A.M. Dirac A theory of electrons and protons, Proc. Roy. Soc. Lond. A, Volume 126 (1930), pp. 360-365
[10] F.J. Dyson Advanced quantum mechanics, World Scientific, Hackensack, NJ, 2007 (Translated by D. Derbes) | MR | Zbl
[11] E. Engel; P. Schwerdtfeger Relativistic density functional theory: foundations and basic formalism, Relativistic electronic structure theory, part 1. Fundamentals (Theoretical and computational chemistry), Volume 11, Elsevier, Amsterdam, 2002, pp. 524-624
[12] M.J. Esteban; M. Lewin; É. Séré Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc., Volume 45 (2008) no. 4, pp. 535-593 | MR
[13] V. Fock Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zts. f. Phys., Volume 61 (1930) no. 1-2, pp. 126-148
[14] W.H. Furry A symmetry theorem in the positron theory, Phys. Rev., Volume 51 (1937) no. 2, pp. 125-129 | Zbl
[15] G. Gabrielse; D. Hanneke; T. Kinoshita; M. Nio; B. Odom New determination of the fine structure constant from the electron g value and QED, Phys. Rev. Lett., Volume 97 (2006) no. 3, pp. 030802
[16] P. Gravejat; C. Hainzl; M. Lewin; É. Séré Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields, Preprint (2012) | MR
[17] P. Gravejat; M. Lewin; É. Séré Ground state and charge renormalization in a nonlinear model of relativistic atoms, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 179-215 | MR | Zbl
[18] P. Gravejat; M. Lewin; É. Séré Renormalization and asymptotic expansion of Dirac’s polarized vacuum, Commun. Math. Phys., Volume 306 (2011) no. 1, pp. 1-33 | MR | Zbl
[19] W. Greiner; J. Reinhardt Quantum electrodynamics, Springer-Verlag, Berlin, 2009 (Translated from the German) | MR | Zbl
[20] C. Hainzl; M. Lewin; É. Séré Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation, Commun. Math. Phys., Volume 257 (2005) no. 3, pp. 515-562 | MR | Zbl
[21] C. Hainzl; M. Lewin; É. Séré Self-consistent solution for the polarized vacuum in a no-photon QED model, J. Phys. A, Math. Gen., Volume 38 (2005) no. 20, pp. 4483-4499 | MR | Zbl
[22] C. Hainzl; M. Lewin; É. Séré Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics, Arch. Rat. Mech. Anal., Volume 192 (2009) no. 3, pp. 453-499 | MR | Zbl
[23] C. Hainzl; M. Lewin; É. Séré; J.-P. Solovej A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics, Phys. Rev. A, Volume 76 (2007) no. 5, pp. 052104
[24] C. Hainzl; M. Lewin; J.-P. Solovej The mean-field approximation in quantum electrodynamics. The no-photon case, Commun. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 546-596 | MR | Zbl
[25] D. Hartree The wave-mechanics of an atom with a non-coulomb central field. Part I, Proc. Camb. Philos. Soc., Volume 24 (1928) no. 1, pp. 89-312
[26] W. Heisenberg Bemerkungen zur diracschen theorie des positrons, Zts. f. Phys., Volume 90 (1934) no. 3, pp. 209-231 | Zbl
[27] W. Heisenberg; H. Euler Folgerungen aus der diracschen theorie des positrons, Zts. f. Phys., Volume 98 (1936) no. 11-12, pp. 714-732 | Zbl
[28] W. Hunziker; I.M. Sigal The quantum N-body problem, J. Math. Phys., Volume 41 (2000) no. 6, pp. 3348-3509 | MR | Zbl
[29] W.E. Lamb; R.C. Retherford Fine structure of the hydrogen atom by a microwave method, Phys. Rev., Volume 72 (1947) no. 3, pp. 241-243
[30] L.D. Landau On the quantum theory of fields. Bohr Volume, Pergamon Press, Oxford, 1955 (Reprinted in Collected papers of L.D. Landau. Pergamon Press, Oxford, 1965) | MR
[31] L.D. Landau; I.Y. Pomeranchuk On point interaction in quantum electrodynamics, Dokl. Akad. Nauk SSSR (N.S.), Volume 102 (1955), pp. 489-492 | MR | Zbl
[32] M. Lewin; P. Exner Renormalization of Dirac’s polarized vacuum, Mathematical results in quantum physics (Proceedings of the QMath11 Conference) (2011), pp. 45-59 | MR | Zbl
[33] M. Lewin A nonlinear variational problem in relativistic quantum mechanics, Proceeding of the sixth European Congress of Mathematics (2013)
[34] E.H. Lieb Variational principles for many-fermion systems, Phys. Rev. Lett., Volume 46 (1981) no. 7, pp. 457-459 | MR
[35] E.H. Lieb Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A, Volume 29 (1984) no. 6, pp. 3018-3028
[36] L.I. Mandelshtam; I.E. Tamm The uncertainty relation between energy and time in nonrelativistic quantum mechanics, J. of Phys. (USSR), Volume 9 (1945), pp. 249-254 | MR | Zbl
[37] G. Nenciu; G. Scharf On regular external fields in quantum electrodynamics, Helv. Phys. Acta, Volume 51 (1978) no. 3, pp. 412-424 | MR
[38] W. Pauli; M.E. Rose Remarks on the polarization effects in the positron theory, Phys. Rev., Volume 49 (1936) no. 6, pp. 462-465
[39] W. Pauli; F. Villars On the invariant regularization in relativistic quantum theory, Rev. Modern Phys., Volume 21 (1949), pp. 434-444 | MR | Zbl
[40] M.E. Peskin; D.V. Schroeder An introduction to quantum field theory, Frontiers in Physics, 94, Westview Press, New-York, 1995 | MR
[41] M. Reed; B. Simon Methods of modern mathematical physics IV. Analysis of operators, Texts and Monographs in Physics, Academic Press, New-York, 1980 | MR | Zbl
[42] J. Sabin Static electron-positron pair creation in strong fields for a nonlinear Dirac model, Preprint (2001)
[43] J. Schwinger Quantum electrodynamics. I. A covariant formulation, Phys. Rev., Volume 74 (1948) no. 10, pp. 1439-1461 | MR | Zbl
[44] R. Serber Linear modifications in the Maxwell field equations, Phys. Rev., Volume 48 (1935) no. 1, pp. 49-54
[45] R. Serber A note on positron theory and proper energies, Phys. Rev., Volume 49 (1936) no. 7, pp. 545-550
[46] J.-P. Solovej Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math., Volume 104 (1991) no. 2, pp. 291-311 | MR | Zbl
[47] J.-P. Solovej The ionization conjecture in Hartree-Fock theory, Annals of Math., Volume 158 (2003) no. 2, pp. 509-576 | MR | Zbl
[48] B. Thaller The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | MR | Zbl
[49] E.A. Uehling Polarization effects in the positron theory, Phys. Rev., Volume 48 (1935) no. 1, pp. 55-63 | Zbl
Cited by Sources: