We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as . This result was obtained in collaboration with Y. Maekawa (Kobe University).
Nous étudions le comportement asymptotique en temps des solutions de l’équation de Navier-Stokes incompressible dans un domaine extérieur du plan, avec condition de non-glissement à la frontière. Les données initiales que nous considérons sont des perturbations d’énergie finie d’un tourbillon régulier dont la circulation à l’infini est petite, mais nous n’imposons aucune autre restriction à leur taille. En utilisant une estimation d’énergie logarithmique et des arguments d’interpolation, nous montrons que la solution converge lorsque vers un tourbillon d’Oseen autosimilaire. Ce résultat a été obtenu en collaboration avec Y. Maekawa (Université de Kobe).
@incollection{JEDP_2012____A3_0, author = {Thierry Gallay}, title = {Long-Time {Asymptotics} for the {Navier-Stokes} {Equation} in a {Two-Dimensional} {Exterior} {Domain}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {3}, pages = {1--17}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2012}, doi = {10.5802/jedp.86}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.86/} }
TY - JOUR AU - Thierry Gallay TI - Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain JO - Journées équations aux dérivées partielles PY - 2012 SP - 1 EP - 17 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.86/ DO - 10.5802/jedp.86 LA - en ID - JEDP_2012____A3_0 ER -
%0 Journal Article %A Thierry Gallay %T Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain %J Journées équations aux dérivées partielles %D 2012 %P 1-17 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.86/ %R 10.5802/jedp.86 %G en %F JEDP_2012____A3_0
Thierry Gallay. Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain. Journées équations aux dérivées partielles (2012), article no. 3, 17 p. doi : 10.5802/jedp.86. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.86/
[1] H. Bae; B. Jin Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal., Volume 240 (2006) no. 2, pp. 508-529 | MR | Zbl
[2] J. Bedrossian; N. Masmoudi Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in with Measure-valued Initial Data (2012) (Preprint arXiv:1205.1551)
[3] J. Bergh; J. Löfström Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976 (Grundlehren der Mathematischen Wissenschaften, No. 223) | MR | Zbl
[4] W. Borchers; T. Miyakawa -decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Rational Mech. Anal., Volume 118 (1992) no. 3, pp. 273-295 | MR | Zbl
[5] A. Carpio Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations, Volume 19 (1994) no. 5-6, pp. 827-872 | MR | Zbl
[6] P. Constantin; C. Foias Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988 | MR | Zbl
[7] W. Dan; Y. Shibata On the – estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. Soc. Japan, Volume 51 (1999) no. 1, pp. 181-207 | MR | Zbl
[8] W. Dan; Y. Shibata Remark on the - estimate of the Stokes semigroup in a -dimensional exterior domain, Pacific J. Math., Volume 189 (1999) no. 2, pp. 223-239 | MR | Zbl
[9] H. Fujita; T. Kato On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 | MR | Zbl
[10] G. P. Galdi An introduction to the mathematical theory of the Navier-Stokes equations, Springer Monographs in Mathematics, Springer, New York, 2011 (Steady-state problems) | MR | Zbl
[11] I. Gallagher; Th. Gallay Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann., Volume 332 (2005) no. 2, pp. 287-327 | MR | Zbl
[12] Th. Gallay; Y. Maekawa Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity (2012) (Preprint arXiv:1202.4969) | MR
[13] Th. Gallay; C. E. Wayne Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys., Volume 255 (2005) no. 1, pp. 97-129 | MR | Zbl
[14] Y. Giga; T. Miyakawa; H. Osada Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., Volume 104 (1988) no. 3, pp. 223-250 | MR | Zbl
[15] C. He; T. Miyakawa Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries, Indiana Univ. Math. J., Volume 55 (2006) no. 5, pp. 1483-1555 | MR | Zbl
[16] C. He; T. Miyakawa On two-dimensional Navier-Stokes flows with rotational symmetries, Funkcial. Ekvac., Volume 49 (2006) no. 2, pp. 163-192 | MR | Zbl
[17] D. Iftimie; M. Lopes Filho; H. Nussenzveig Lopes Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations, Volume 28 (2003) no. 1-2, pp. 349-379 | MR | Zbl
[18] G. Iftimie; G. Karch; Ch. Lacave Self-similar asymptotics of solutions to the Navier-Stokes system in two dimensional exterior domain (2011) (Preprint arXiv:1107.2054)
[19] T. Kato; H. Fujita On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, Volume 32 (1962), pp. 243-260 | Numdam | MR | Zbl
[20] H. Kozono -solutions of the Navier-Stokes equations in exterior domains, Math. Ann., Volume 312 (1998) no. 2, pp. 319-340 | MR | Zbl
[21] H. Kozono; T. Ogawa Decay properties of strong solutions for the Navier-Stokes equations in two-dimensional unbounded domains, Arch. Rational Mech. Anal., Volume 122 (1993) no. 1, pp. 1-17 | MR | Zbl
[22] H. Kozono; T. Ogawa Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann., Volume 297 (1993) no. 1, pp. 1-31 | MR | Zbl
[23] H. Kozono; M. Yamazaki Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space , Houston J. Math., Volume 21 (1995) no. 4, pp. 755-799 | MR | Zbl
[24] O. A. Ladyženskaja Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Comm. Pure Appl. Math., Volume 12 (1959), pp. 427-433 | MR | Zbl
[25] J. Leray Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appliquées 9ème série, Volume 12 (1933), pp. 1-82 | Zbl
[26] J. Leray Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appliquées 9ème série, Volume 13 (1934), pp. 331-418
[27] J.-L. Lions; G. Prodi Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, Volume 248 (1959), pp. 3519-3521 | MR | Zbl
[28] K. Masuda Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2), Volume 36 (1984) no. 4, pp. 623-646 | MR | Zbl
Cited by Sources: