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Two Hartree-Fock models for the vacuum
polarization

Philippe Gravejat Christian Hainzl Mathieu Lewin Eric Séré

Deux modeles de Hartree-Fock pour la polarisation du vide

Résumé

Nous présentons des résultats récents sur la dérivation et ’analyse de deux
modeles de type Hartree-Fock pour la polarisation du vide. Nous portons une
attention particuliére a la construction variationnelle d’un vide polarisé auto-
consistent, et a la pertinence physique de notre construction non perturbative
vis-a-vis de la description perturbative donnée par 1’électrodynamique quan-
tique.

Abstract

We review recent results about the derivation and the analysis of two
Hartree-Fock-type models for the polarization of vacuum. We pay particular
attention to the variational construction of a self-consistent polarized vacuum,
and to the physical agreement between our non-perturbative construction and
the perturbative description provided by Quantum Electrodynamics.

1. Introduction

During the past century, the classical picture of the vacuum as an empty object
was challenged by a series of theoretical advances and experimental observations
including the measurement of the Lamb shift [29] and the derivation of the Casimir
effect [3] (see also [4]). The description of the vacuum as a complicated fluctuating
system emerged. An intuitive picture for this system can be derived from the obser-
vation by Blackett and Occhialini [2] of the creation of electron-positron pairs when
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one provides a sufficient amount of energy to the vacuum. Since the energy-time
uncertainty principle [36] allows important fluctuations of energy during short time
intervals, nothing prevents the vacuum from being the place of permanent creations
and annihilations of pairs of virtual particles.

This phenomenon affects the interactions between physical particles. It is in par-
ticular at the origin of the vacuum polarization. In presence of an external elec-
tromagnetic field, the virtual electron-positron pairs modify the distributions of
charges and currents originally generated by the fields. The corrections with respect
to the original distributions are computed using Quantum Electrodynamics (see e.g.
[40, 19, 10]). This perturbative theory provides their value in terms of a power series
with respect to the Sommerfeld fine-structure constant

62

a= 47T€07:LC.

Unfortunately, divergences appear at any order in the computations. In order to
obtain a well-defined value, one has to appeal to complicated renormalization pro-
cedures, which provide corrections in an extremely accurate agreement with physical
experiments in spite of their intricacy (see e.g. [15]).

Our goal in this survey is to describe recent mathematical results concerning sim-
plified models for the vacuum polarization. The main difference with Quantum Elec-
trodynamics lies in the non-perturbative nature of the models. The fine-structure
constant a being fixed, the polarized vacuum is constructed by variational argu-
ments. The main difficulty lies in the choice of the approximations to make in order
to allow such a construction and to guarantee its relevance with respect to the
perturbative computations of Quantum Electrodynamics.

The results in this survey are based on a seminal paper by Chaix and Iracane
[5] (see also [6]), which provides a mean-field framework for the analysis of the
vacuum polarization. In this setting, the system under consideration is composed of
the physical electrons and positrons, coupled with virtual ones which give account
of the polarized vacuum. All of them interact with photons, the interactions being
instantaneous. The electrons and positrons are described using an Hartree-Fock
approximation. Under this approximation, and using renormalization procedures
which are quite standard in the context of Quantum Electrodynamics, it becomes
possible to define rigorously an energy for the system. The polarized vacuum is
then mathematically constructed as a critical point of this energy. One can compare
the expansions of its charge and current densities with respect to the fine-structure
constant « to the ones provided by Quantum Electrodynamics, and check, at least
in the purely electrostatic case, that the approximations made in order to fashion
the simplified models are quite reasonable.

This is in brief what we are going to describe in this survey. In the first section,
we focus on the derivation of the two Hartree-Fock models that we are going to
analyze mathematically. We provide some further details on the notion of polarized
vacuum, as well as on the nature of an Hartree-Fock approximation. The second
section is devoted to the mathematical analysis of our first model, the so-called
Bogoliubov-Dirac-Fock model, which corresponds to the purely electrostatic case.
We give rigorous existence results for the polarized vacuum, and check (in the re-
duced case) the relevance of our definitions with respect to Quantum Electrodynam-
ics by computing an asymptotic expansion of the total charge density with respect
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to the fine-structure constant «. In the third section, we consider the Pauli-Villars
regulated model which takes account of the electromagnetic interactions with the
photons. Our main results about this further model deal with its rigorous definition
and with the mathematical construction of a polarized vacuum.

2. Derivation of the Hartree-Fock models for the vacuum
polarization

2.1. The picture of the Dirac sea

In relativistic quantum mechanics, individual electrons are represented by spinors
¢ € L*(R3,C*). This description originates in the works of Dirac [7, 8, 9], who
introduced the formula

Ec(w) = <Dm,0 (@ZJ% ¢>L2(R3,(C4)7

for the computation of the kinetic energy of a relativistic electron. The free Dirac
operator D,,  is defined as

Dyo = hea - (—iV) + mc*B,

where h, ¢ and m stand respectively for the reduced Planck constant, the speed
of light (in the free vacuum), and the (bare) mass of an electron. Without loss of
generality, we can make a choice of units such that 2 =1 and ¢ = 1. In the sequel,
we adopt this choice, so that we drop the dependence on A and ¢ of the operator
Dy o-

The Dirac operator is a self-adjoint operator on L*(IR?, C*), with domain H*(R3, C*)
(see e.g. [48]). The Dirac matrices @ = (a1, @2, ax3) and B are given by the formulae

. 0 O o ]2 0
ak_<0k 0) and B‘(o —12>’

where the Pauli matrices o, o9 and o3 are equal to

01 0 —1 1 0
0'1:<1 0), G2:<i 0) and 0'3:<0 _1>.

The Dirac matrices are designed so as to satisfy the identity

D? = —A+m?l.

m,0
As a result, the spectrum of the free Dirac operator splits into two intervals according
to the expression
(Do) = (=00, —m] U [m, +00).
The spectrum is interpreted as the possible levels of kinetic energy for a relativistic
electron, so that nothing prevents the kinetic energies to be arbitrarily negative.
Such a phenomenon has never been observed in practice.

Dirac [7, 8, 9] by-passed the difficulty introducing the picture of the Dirac sea.
In the free vacuum, an infinite number of virtual electrons completely fill in the
levels of negative energy. The possible levels of energy for “physical” electrons are
positive. The picture amounts to claiming that the free vacuum is not represented
by a vanishing quantity, but instead is identified to the negative spectrum of the free
Dirac operator. In the following where we will consider electrons in an Hartree-Fock
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state (see Subsection 2.2), the free vacuum will be more precisely identified to the
negative spectral projector

Pr;,o = X(—oo,o](Dm,o)-
In presence of an additional external electromagnetic four-potential

Aext - (Véxta Aext)7

the nature of the vacuum is modified by the interactions between the virtual elec-
trons and the external field. In the simplified Furry picture [14], the vacuum is
described through the introduction of the electromagnetic Dirac operator

DmveAext = (_Zv - eAext) + m/B + GVE,xt,

which is written here in physical units such that the vacuum permittivity e is equal
to 1/4m. The so-called dressed vacuum is identified to the negative spectral projector

Furry
m,Aext X(—OO7O] (DmveAext ) .

The virtual electrons of the dressed vacuum span the range of the projector Pfﬁ;lyext.
They have no reason to remain identical to the virtual electrons in the free (or bare)
vacuum which span the range of the projector P, o. In general, the charge density
of the vacuum does not remain constant. The dressed vacuum is polarized. In the
case where the external field is strong enough, a positive eigenvalue can even appear
in the spectrum of the electromagnetic Dirac operator D,, 4.,., creating an hole in
its negative spectrum. A (physical) electron-positron pair is produced, the electron
being identified to the positive eigenvalue, while the hole is identified to the positron.

The Furry picture provides a good approximation for the polarization of the vac-
uum when the external fields are not too strong. In practice, the non-constant charge
density of the polarized vacuum modifies the electromagnetic field. The virtual elec-
trons react to the corrected field which in turn affects the nature of the polarization.
In order to describe it more accurately, one has to look for more sophisticated mod-
els.

2.2. The Hartree-Fock approximation

In the Physics literature, vacuum polarization is described using Quantum Elec-
trodynamics which provides extremely accurate computations for the charge and
current densities of the polarized vacuum. On the mathematical level, this theory is
far from being completely understood, in particular, due to the perturbative nature
of its computations. In this subsection, we present a set of approximations which
make possible the construction of non-perturbative models for the vacuum polariza-
tion. The main one consists in describing the electronic structures as Hartree-Fock
states.

The simplest way to introduce the Hartree-Fock approximation is probably to
come back to the description of N classical electrons around a positive density of
charge v. In this situation, the electronic structure is described through the N-body
Hamiltonian

H§Zi<_271nA“_€2/R dt) dy+262>, (2.1)

3 |z =y =i |z —

V-4



which acts on the space L2((R3)", C) of electronic states ¥ which are anti-symmetric
with respect to the permutations of the variables x; (in order to guarantee the va-
lidity of the Pauli exclusion principle), and with a density |¥|*> which depends sym-
metrically on the variables z; (so as to handle with undistinguishable electrons).
The possible electronic structures correspond to the eigenfunctions of the Hamil-
tonian HY, the ground state structure corresponding to the minimal eigenvalue.
The analysis of HY is rather involved (see [28, 41] for more details), so that several
approximations have been suggested to simplify the description.

The Hartree-Fock approximation [25, 13] restricts the analysis to the Hartree-Fock
states U which write as Slater determinants

1
\I/(ZL‘l, N ,I'N) = \111 VANRRIVAY \I/N<JI1, e ,ZEN) = Wdet (qji(l’j))lgi,jSN7

where Uy, ..., Uy are N orthogonal wavefunctions in L?(R3, C). The Hartree-Fock
states Wy A --- A Uy are the less correlated electronic structures. Their energy is
given by the expression

EHF (T, Ao AT /V\IJQ—//’W | ted
prn ) LS ([ wwe) =5 [ [ B,

pu(®)pu(y)
d d PREIPY) G dy.
/RB/]R@ |a:—y| $y+2 RS |r —y v

In this formula, vg refers to the one-body density operator with integral kernel

In other words, vy is the orthogonal projector on the linear space spanned by the
wavefunctions ¥;. Concerning the charge density py, it is equal to

N

pulr) =3 |Wi(2)]* = yu(z,2).

In particular, the Hartree-Fock energy only depends on the one-body density oper-
ator vg through the identity

. |y (2
E (v) =5, (A7) _*/Rs/nes Ix—y| d dy

2

e / V@)pwly) 4y pe(@)pw¥) o0
R3 JR3 \x— 2 R3

|z —y

(2.2)

where tr(—A vy) is the trace of the finite rank operator —A vy. As a consequence,
the Hartree-Fock electronic structure can be computed in terms of an orthogonal
projector, the Hartree-Fock ground state being identified to the projector which
minimizes the energy E'F among all the possible projectors.

The picture is similar in the relativistic case. In Quantum Electrodynamics, the
(formal) Hamiltonian describing an electronic structure in the presence of a (clas-
sical) external electromagnetic four-potential Aexy = (Vexs, Aext) may be written in
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the Coulomb gauge as

HAext = / U (x)|a- (—iV — eA(z) — eAext(x)) + mﬁ} U(x)dx

(2.3)
+e/Vext w)do+ //p d dy+—/|cur1A ()[? da.

In this expression, ¥(z) refers to the second quantized field operator which annihi-
lates an electron at x, while the vector A(z) is the magnetic field operator for the
photons. The density operator p(x) is defined as
1.4
pla) =5 > [V (), Vo ()], (2.4)
o=1

where [a, b] = ab — ba (see [26, 27, 45, 43, 23, 32| for more details about the Hamil-
tonian HAex).

The Hamiltonian H4 acts on the Fock space F = F, ® Fon, where Fg is the
fermionic Fock space for the electrons and Fp, is the bosonic Fock space for the
photons. As in the usual case, the main approximation in order to derive Hartree-
Fock models for the description of relativistic electrons consists in restricting the
Hamiltonian to states of the special form

Q = Qnr ® Qcon,

where Qur is an electronic Hartree-Fock state characterized by its one-body density
matrix

v(x,y) = <\Ij*($)‘ll(y)>QHF7
and Q¢ is a coherent state characterized by its classical magnetic potential

A(z) = (A@))ace.-

In practice, this amounts to representing the electrons by an operator v as in classical
Hartree-Fock theory, while the photons are described by a magnetic potential A,
which is nothing more than a classical vector field. The main difference with the
classical case lies in the fact that the operator v does not only take into account the
physical electrons, but also the virtual ones representing the vacuum. In general, it
is not anymore an orthogonal projector with finite rank, but with infinite one, which
causes the apparition of divergences in the computation of the energy.

Up to a universal constant which diverges in infinite volume, this energy is equal
to

2
At _ B e Py-1/2() py—1/2(Y)
5 ( 7A) - tr ('Dm7e(‘/ext7A+Aext) (’)/ 1/2)) + 5 /IRB R?’ |fL‘ _ y| dx dy

7= 1/2) (= y)I” 1/ 2
— 1A :
-3 /]RB/R3 p— dxdy+87r R3|cur (z)|* dx

(2.5)

This expression is similar to the one for the classical Hartree-Fock energy in (2.2).
The kinetic energy is now equal to tr(D,, o(y—1/2)), which amounts to replacing the
classical operator —A by its relativistic version D,, o. One also recovers the presence
of the so-called direct and exchange electrostatic terms in the first, respectively
second, line. The main difference lies in the property that the energy is not directly
written in terms of the density operator 7, but in terms of the difference v — 1/2.
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This is a consequence of the charge-conjugation invariant choice (2.4) for the density
operator p(z) (see [24] for more details). This property is particularly helpful when
one attempts to give a rigorous meaning to the expression in (2.5).

The energy in (2.5) presents major divergences. Since the operator D, is un-
bounded and v — 1/2 has infinite rank when ~ is a projector, the kinetic energy
is not well-defined. Moreover, since v — 1/2 is not a compact operator, defining its
kernel (v — 1/2)(x,y), and thereafter the density p,_1/2, is a further challenge.

Similar divergences appear in Quantum Electrodynamics, in which regularization
techniques have been developed in order to by-pass the difficulty. These techniques
mainly rely on the introduction of an ultraviolet cut-off A in the model. In the
sequel, we describe how it is possible to adapt two regularization techniques to
provide a rigorous meaning to the energy in (2.5) and construct a consistent Hartree-
Fock model for the vacuum polarization. This leads to the construction of two
different models. The first one is the Bogoliubov-Dirac-Fock model which does not
take into account the effects due to the presence of photons, as well as of a possible
external magnetic field. In the second one, handling with these effects is in contrast
possible due to the use of a more ingenious regularization, the so-called Pauli-Villars
regularization.

3. The Bogoliubov-Dirac-Fock model

3.1. Derivation and functional framework

The Bogoliubov-Dirac-Fock model was introduced by Chaix and Iracane in [5] (see
also [6]). It only takes into account kinetic and electrostatic aspects. The external
magnetic potential A. and the magnetic potential A for the photons are set equal
to 0. Concerning the external electrostatic potential V., it is induced by an external
charge density v according to the Coulomb formula

Vext () = —G/R V() dy.

3 |z —y

As a result, the formal Hartree-Fock energy for the one-body density operator
reduces to the expression

fr (1) =tr (Dmo(y —1/2)) — a//w dady

//pv 1/2(%) py—1/2(y d dy //| v —1/2)(z,y)|? dvdy
T3 |z —y| 2 lz — 9 ’
2

where we have introduced the (bare) Sommerfeld fine-structure constant a = e?.
Recall that in this formula, the function (y —1/2)(z,y) refers to the (formal) kernel
of the operator v — 1/2, while the density p,_1/, is (also formally) defined as

(3.1)

pr-1/2(7) = (v — 1/2)(z, x).
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One can introduce a reduced version of the energy omitting the exchange electro-
static term according to the formula

e () =tr (Dm,O(V - 1/2)) - a//dedy

+04//P7—1/2($)Pw—1/2(?/) dady.
2 |z =y

In the sequel, we restrict our attention to the reduced energy in order to simplify
the analysis. We will point out the results which remain available for the energy
with exchange term (see [23, 12, 32] and references therein for more details).

The critical points for the energy £} are solutions to the self-consistent equations

|:’7a Dv] =0,

where the Fock operator D, is defined as

(3.2)

1

* —.
|z

An orthogonal projector ~, which minimizes the energy 4 among all the possible
projectors, is solution to the equation

Y = X(—oo,O](D’Y*)‘ (33)

The projector 7, is interpreted as the polarized vacuum according to the picture of
the Dirac sea. The spinors of the virtual electrons in the polarized vacuum span the
range of 7,. In view of the self-consistent equation (3.3), they completely fill in the
negative spectrum of the Fock operator D., .

The model is fashioned to allow for a description of the electronic structure with
N physical electrons around the charge density v. When ~ is an orthogonal pro-
jector with finite rank, its rank, or alternatively its trace, provides the number, or
alternatively the total charge, of the electrons in the structure represented by . The
ground state structure is defined as a minimizer vy of the energy £y in the charge
sector with charge N, that is among the orthogonal projectors with trace equal to
N. Such a minimizer vy (formally) satisfies the self-consistent equation

Dy =Dy o+ Oé(p,y_l/z — V)

TN = X(—OOHHN](D’YN)’ (34)

where py is the Fermi level of the electronic structure described by the operator
v~ Following again the picture of the Dirac sea, the projector Y3 = X (—o0,0/(Dryy)
describes the virtual electrons of the vacuum polarized by the charge density v and
the N physical electrons. They are themselves given by the orthogonal projector
WR,h = X(0,un](Dyy)- In particular, their energy is positive.

At this stage, it is necessary to emphasize that most of the definitions in the
previous discussion are only formal. For example, any orthogonal projectors of finite
trace must have a finite rank which cannot be consistent with the identity in (3.4).
However, it is possible to provide a rigorous meaning to the reduced Bogoliubov-
Dirac-Fock model (defining for instance a notion of trace for projectors with infinite
rank) by invoking regularization techniques.

In this direction, Hainzl, Lewin and Solovej [24] noticed that the model is well-
defined in a finite-dimensional setting. They suggested to restrict the analysis to
a box Cp = [-L/2,L/2[? of size L, with periodic boundary conditions, and to
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introduce an ultraviolet cut-off A in the Fourier domain. This amounts to assuming
that the operators v act on the finite-dimensional space

Hia = {\I/ = Z ag expi(k, g3, ap € C4},
kGRLYA
where Rpn = {k € (2n/L) Z3, s.t. |k| < A}. In this periodic framework, the
reduced Hartree-Fock energy takes the form

Era) =tr (Do =1/D) = [ [ 1ol ()Gule — y) dudy s
o b 3.5
+5 [ ] o)1)l — y) drdy.

In this definition, the function v, is a periodic version of the charge density v. It is

equal to
3
vi(x) = (“i_”) S ok expilk, z)as,
kERL A
where U refers to the Fourier transform of v. In order to get a chance to define
properly the Coulomb potentials in (3.5), it is natural to assume that v belongs to
the Coulomb space

|/ (k)P
|2

C®) = {f € LL(®,C), st IfIE= [

The periodic Coulomb kernel is similarly given by

4T 1 .
ke(2r/L) Z3\{0}

dk < —{—oo}.

where the constant K is fixed so that G is positive. Finally, the charge density
p—1/2 is defined as

1 — o, - "
prp(e) = trea(y=1/2)(w2) = 75 > ey = 1/2)(, k) expi(j =k, z)ws,
(4,k)E(RL,A)?
where (7 — 1/2)(x,y) is the kernel of the (finite-rank) operator v — 1/2.
In this setting, the periodic reduced Hartree-Fock energy is well-defined on the
convex hull of orthogonal projectors on Hy, », which is defined as

Gra = {’Y € L(Hra), st.y" =vyand 0 <y < I}.

Moreover, the energy owns a minimizer on G a, which can be interpreted as the

polarized vacuum .

Proposition ([24]). Let m, o, A and L be positive numbers and consider a function
v € C(R®) such that U is continuous on R3. There exists a minimizer 7% to the
minimization problem

inf EY, (7).

er
v€Gra P

1Extending the minimization problem under consideration to a convex hull like Gy, 5 is standard
in Hartree-Fock theory. The construction of minimizers is simplified, and it turns out that they
still solve the initial problem (see e.g. [34]).
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When v = 0, the minimizer 72 is the negative spectral projector P oL of the re-
striction of the free Dirac operator Dy, o to the finite-dimensional space Hrp .

The operator 7 is identified to the polarized vacuum corresponding to the pre-
vious periodic setting. A simple way to describe the polarized vacuum in the full
space is to consider the thermodynamic limit L — 400 of the minimizers v7. It
turns out that the limit exists (when the ultraviolet cut-off A is fixed) and that it
can be described using the reduced Bogoliubov-Dirac-Fock energy (see [24]).

This energy is defined according to the formula

v _ v(@)pg(y) a PQ()po(y)
rBDF(Q) - trPy;,O (Dm,OQ) - OC/IR3 Wdi[}dy + E w5 s dedy

(3.6)
The difference with respect to the reduced Hartree-Fock energy in (3.2) lies in the
choice of a reference projector to compute the energy. More precisely, the energy is
not directly expressed in terms of the projector ~, but in terms of its difference

Q:’V_Pn;Oa

with the negative spectral projector P, ; of the free Dirac operator. In other words,
the free vacuum energy is set equal to 0 and all the energies are computed with
respect to this reference.

Hainzl, Lewin and Séré [20] constructed a functional framework in which the re-
duced Bogoliubov-Dirac-Fock energy is well-defined and bounded from below. They
observed the necessity to conserve an ultraviolet cut-off A in the model (see [21])
assuming that the operators ) do not act on L?(R3,C*), but on the space

Ha = {\If € L*(R3 CY), st. Sllpp(@) C B(O,A)}.

This assumption presents the major advantage to transform the operator D,, in
a bounded operator. We will see in Subsection 3.3 below how to eliminate the
ultraviolet cut-off A from this description of the polarized vacuum.

More precisely, the operators () belong to the function space

&0 — {T € Ga(Ha), st. (PgT Py, (I = Pg)T(I — Pry)) € 61(7-[A)2}, (3.7)

where &1 (H) and G,(H, ) are the spaces of trace-class, respectively Hilbert-Schmidt,
operators on H,. The trace-class conditions in (3.7) originate in the property that a
formal minimizer @, of the energy £y is in general not trace class (see Theorem
2 below). As a consequence, it is not so easy to define properly its kinetic energy.
This is done extending the usual definition through the formula

trp- (T) = tr (ProTPro) + 1t (I = Prg)T(I = Pry)), (3.8)

which is well-defined when T' is in &%. Notice here that the quantity trp- (7)) is
m,0

equal to the trace of T" when T is trace class.

Concerning the charge density pg, its definition relies on the introduction of the
ultraviolet cut-off A. Since the operator () is Hilbert-Schmidt, it owns a kernel
Q(x,y), which belongs to the space L?(R3 x R3). Moreover, its Fourier transform is
supported into the product set B(0,A) x B(0,A) due to the presence of the cut-off.
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In particular, it is a smooth function so that the charge density pg can be defined
according to the identity

po(x) = tres Q(z, ).
With this last definition at hand, one can define properly the reduced Bogoliubov-
Dirac-Fock energy 2.

Proposition ([20]). Let A > 0, a > 0 and v € C(R®). The energy Egpp s well-
defined on the set &Y.

The introduction of the reduced Bogoliubov-Dirac-Fock model is justified by tak-
ing the thermodynamic limit L — 400 in the periodic model introduced by Hainzl,
Lewin and Solovej in [24]. As a matter of fact, they established the following theorem
(which remains available with a few minor changes in the case of the Bogoliubov-
Dirac-Fock model with exchange term).

Theorem ([24]). Let m, « and A be positive numbers and consider a function
v € C(R3?) such that U is continuous on R3.
(i) When v =0, we have

72 = o1
In particular,
0 —
HVL - Pm,OHL(HLYA) — 0, (3.9)
and
Elo(1) = +oo, (3.10)
as L — +oo.

it) There exists an operator Q, in &Y such that, up to a possible subsequence, we
A

have

as | — 400, uniformly on any compact subset of R? x R3.

(1i1) The operator Q. is a minimizer of the reduced Bogoliubov-Dirac-Fock energy

Enpr on the set

Oy = {Q €6}, st. Q* =Q and — PLo<Q<1I- Pm’o}.
Moreover, we have

Er(V7) = E4(39) = Elpp(Q.) = min { Elpe(Q), Q € @4}, (3.12)
as L — +o0.

The choice of the projector P, ; as reference for a model in the full space is justified
by the convergences in (3.9) and (3.10). In the thermodynamic limit L — +oo0,
the free vacuum is given by P, , according to the original picture of the Dirac sea.
Moreover, one has to subtract its infinite energy in order to handle with a reasonable
model.

In this case, the convergences in (3.11) and (3.12) show that the polarized vacuum
is actually described by the reduced Bogoliubov-Dirac-Fock model. More precisely,
the polarized vacuum is identified to the projector v, = P, o + Q. corresponding

2The original Bogoliubov-Dirac-Fock energy with exchange term is also well-defined on a set
similar to &9.
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to the minimizer (), of the energy £/pp on the set Q). Let us recall now some
elements about the construction of such a minimizer, as well as its main properties.

3.2. Construction of the polarized vacuum and the electronic
structures with N electrons

The existence of the minimizer (), was established by Hainzl, Lewin and Séré in
[20, 21].

Theorem ([20, 21]). Let A > 0, a > 0 and v € C(R?).
(1) The energy E5pr s bounded from below on the set Qx. More precisely, we have

v a v(z)v(y)
isor(Q@) + 5 /R3 /R3 Te—y| dxdy > 0, (3.13)

for any Q € Q. When v =0, inequality (3.13) turns into an equality if and only if
Q=0.

(13) The energy Epr owns a minimizer Q. on Qx, which is solution to the self-
consistent equation

Yo = Qu+ Prg = X(-o00) (D) + .. (3.14)

where the Fock operator D, is equal to
1
.D>,< = Dm,O + Oé(pQ* — l/) * m,

while 0, refers to a finite-rank operator with range in the kernel of D,.
(tii) The charge density pq, is uniquely determined. When the external charge den-
sity v satisfies the condition

11 1 1
25wl < m2, (3.15)
the minimizer Q. is also unique. In this case, the operator o, is equal to 0, and
N, =trp- (@) =0. (3.16)

Remark. The previous theorem extends with a few minor changes to the Bogoliubov-
Dirac-Fock model with exchange term (see [20, 24]). In this case, inequality (3.13)
was first proved in [1].

Once again, the fact that Q = 0 is the unique minimizer of the energy £%pp
is consistent with the picture of the Dirac sea for the free vacuum. In presence of
an external charge density v, the polarized vacuum is described by the operator
Vs = Q«+ Py, o, which is not necessarily an orthogonal projector due to the presence
of the finite-rank operator ¢,. This defect is a common drawback of the reduced
Hartree-Fock models (see e.g. [46]). It is possible to withdraw the operator d, from
the self-consistent equation satisfied by a minimizer of the Bogoliubov-Dirac-Fock
energy with exchange term (see [20, 24]).

Under condition (3.15), the kernel of the Fock operator D, is necessarily equal to
0, so that the operator ¢, identically vanishes. In this case, one recovers the picture
of the Dirac sea in which the polarized vacuum is identified to the negative spectral
projector v, of the Fock operator D,. It follows from (3.16) that the polarized
vacuum is globally neutral. The trace of @), is indeed interpreted as the charge of
the electronic structure represented by ~, since, at least formally, the charge of the
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negative projector P, o, which gives account of the free vacuum, must be equal to
0. This is consistent with the observation that a weak electrostatic potential cannot
produce physical electrons in the vacuum.

In another direction, one can ask for the behaviour of the minimizer @), when
A — +oo. It turns out that the model collapses in this limit.

Proposition ([21]). Let o > 0 and v € C(R?). We denote by Q a minimizer of
the energy Expp on Qa for a positive number A. Then,

LA
H|Dm70 20, . — 0 and aHin\ - I/HC — 0,
as N — 4o00. In particular,
v oA a/ / v(z)v(y)
- —— ———"2dxd 3.17
rBDF(Q*) 2 Jrs Jgs ’JI—y’ ray, ( )

as A — +oo.

In the limit A — +o00, the operators Q* converge to 0, while their charge densities
po» tend to the function v. The limit density is not the charge density of the limit
operator. In other words, the model does not remain physically consistent in the limit
A — +o00. In particular, taking this limit is not a way to eliminate the ultraviolet cut-
off A. This property is related to the Landau pole phenomenon which was originally
described by Landau [30], and Landau and Pomeranchuk [31]. In Subsection 3.3,
we will see how to deal with the ultraviolet cut-off by invoking renormalization
arguments from Quantum Electrodynamics.

Concerning the description of the electronic structure with N electrons, recall
that they are described by the minimizers () of the reduced Bogoliubov-Dirac-
Fock energy &/zpp in the charge sectors

Qu(N) ={Q € Qu, st. trp- (Q) = N},

Solving this minimization problem is more involved than the construction of the po-
larized vacuum. The main difficulty arises in the fact that the charge sectors Qx(N)
are not stable under weak convergence in &%. To our knowledge, the construction
of the electronic structure with N electrons remains open for the Bogoliubov-Dirac-
Fock model with exchange term. However, Hainzl, Lewin and Séré [22] proved the
following Hunziker-van Winter-Zhislin condition (for both the reduced and original
models).

Proposition ([22]). Let A >0, a > 0 and v € C(R?), and set

v = inf &% , 3.18
rBDF(Q) Qelél,\(q) rBDF(Q) ( )

for any real number q.
(i) Let g € R. If
Eoe(q) < Efgpe(q — k) + Egppr(k), (3.19)

for any k € R*, then the minimization problem (3.18) owns a minimizer Q.
(17) In case of existence, a minimizer Q) is solution to the self-consistent equation

Vg = Qg + Pn;,O = X(—o0,pq) (Dq) + 0y, (3.20)
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where p, € [—1,1] is the Fermi level of the electronic structure. The Fock operator
D, is defined as

The self-adjoint operator o, is finite rank when p, # %1, trace class otherwise, and
it ranges in the kernel of the operator D, — 1.

When ¢ = N is a positive integer, the polarized vacuum is interpreted as the
vac

spectral projector Y3 = X(—oo,0(Dn), while the electronic structure with N phys-
ical electrons is described by the spectral projector 'yR,h = X(0,un](DPn). When the
electrostatic potential induced by the charge density v is weak enough, that is under
condition (3.15), the equality

trp, (O = Pro) =0,

holds, which means that the polarized vacuum is neutral. In this case,

trp- () = trp- (9w = Prg) = trp (Qn) = N.

In other words, the electronic structure really exhibits N physical electrons which
fill in positive energy levels of the Fock operator Dy .

In contrast, nothing rules out the possibility that ¢ is a negative integer. In this
situation, the minimizer @), describes a positronic structure with |g| positrons. The
Fermi level j1, is negative. The polarized vacuum is identified as before to the spectral

projector 7, = X (—o0,01(Dy), while the |g| positrons are represented by the spectral

projector YP" = x (., 01(Dy)-

Checking the validity of condition (3.19) for the Bogoliubov-Dirac-Fock model
with exchange term is widely open except for some weak-coupling or non-relativistic
regimes (see [22] for more details). As a consequence, the existence for a given value
of N of electronic structures with N electrons also remains an open problem. For
the reduced model, it is possible to characterize precisely the numbers for which
inequality (3.19) is fulfilled.

Theorem 1 ([17]). Let A >0, a > 0 and v € L*(R*) N C(R?). Set

J = .
]R3

(i) There exist two constants ¢, € [—00,4+00] and qu € [gm,+00] such that the
minimization problem (3.18) owns a minimizer Q, if and only if

Gm < 4 < qu-
(13) Let
¢e = trp- (@),
where Q. is the absolute minimizer of the energy Expr on QOa. Then,
(¢4, 2) € [gm, qu]”
In particular, when condition (3.15) is fulfilled, the minimization problem (3.18)

owns a minimizer Q, for any value of q € [0, Z].

IvV-14



When the electrostatic potential induced by the charge density v is weak enough,
Theorem 1 guarantees the existence of electronic structures with N electrons for any
integer N between 0 and Z. This is physically relevant in the sense that structures
with IV electrons are experimentally observed for N between 0 and Z + 1. On the
other hand, Theorem 1 does not rule out the existence of electronic structures with
an arbitrary number of electrons. To our knowledge, there are indeed no available
upper bounds on |¢,,| and ;.

Computing such ionization bounds is quite involved even for classical Hartree-
Fock models (see [46, 47]). Concerning the reduced Bogoliubov-Dirac-Fock model, an
additional difficulty lies in the sharpness of the ultraviolet cut-off A. Imposing such
a sharp cut-off amounts to replacing the free Dirac operator D,, o by the operator
D}, , with Fourier transform

—

D)o(p) = (- p+mB) (1+ x(|p*/A%), (3.21)
where
x(r)=0if0<r<1, and x(r)=-+ooifr>1
The discontinuity in the Fourier transform of D}  is one of the source of troubles
which prevents from computing upper bounds on |¢,,| and ¢;.

A natural way to by-pass the difficulty consists in replacing the function y in (3.21)
by a smooth function. This has no major consequences on the previous analysis of
the reduced Bogoliubov-Dirac-Fock model (see [17] for more details). In particular,
Theorem 1 remains available with a smooth ultraviolet cut-off. Moreover, for the
special choice

x(r) =17
and for o, af|v||c and aln A small enough, it is possible to compute the bounds
—Kopn < gm <0, (3.22)
and
Z < qu <27 + Kopa. (3.23)

At the non-relativistic limit @« — 0, A — 400 and aln A — 0, the positive number
K, a satisfies
Ka’,j,A — 0.

In this limit, one recovers the bound computed by Lieb [35] in the classical case,
that is
gn=0 and Z <qy <27

We refer to [17] for more precise statements about this topic, as well as for the
proofs of (3.22) and (3.23) (which are essentially based on the arguments developed
by Lieb in [35]).

3.3. Charge renormalization for the polarized vacuum

A crucial ingredient in the proof of Theorem 1 is the following proposition.

Theorem 2 ([17]). Let A > 0 and o > 0. Consider a function v € L*(R?) NC(R3),

with
/ v=1/7eR,
]R3
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and denote by q,, and qur, the two extremal values in Theorem 1 for the interval of
existence of a minimizer )y of the energy Elzpp on the charge sector Qu(q). Given
any number q € [qm, qu|, the charge density pq, is an integrable function on R®. Its
integral is given by

Z-q
_ 3.24
/RJ( PQg) T+ aBy’ (3.24)
where
Vi 2
jf L ]7__23 dz. (3.25)

In view of Theorem 2, a minimizer (), is not a trace-class operator, at least when
q # Z. Otherwise, the integral of its density would be equal to

RS PQ, = trQq = {q,

which contradicts the fact that the number BY in (3.25) is positive.

The fact that the minimizers (), are not trace class generates a difficulty in their
physical interpretation. The total electrostatic potential V,, which is induced by
the external charge density v and the electrons represented by @), is defined by the
Coulomb formula as

Von(z) = a/ v = pa,y) 4 (3.26)

B |z —yl
When |z| is large enough, an approximation for the potential V;, is provided by the

expression
«
x) %|5E|/R3 (V—qu).

In view of (3.24), it follows that
Z-4q
||

a Z—q
#+ «
1+aBy |zl
when |z| — 400. Whereas the minimizer @), is supposed to represent an electronic
structure with ¢ electrons, the potential V}, does not match the Coulomb formula
for a potential induced by a total charge equal to Z — q.

At this stage, one could argue that it is sufficient to take the limit A — 400 to
solve the difficulty. This is not the case. The constant BY is logarithmically divergent
when A — +00. One can check that

2 5 2 1
By = oo In(A) = o+ o In(2) + AQOO(Aa)' (3.28)
As a consequence, the potential V,, vanishes in the limit A — +o00. This is another
sign of the collapse of the model in this limit.

This logarithmic divergence also appears in Quantum Electrodynamics. This dif-
ficulty is solved by introducing a charge renormalization. Roughly speaking, charge
renormalization consists in accepting the idea that the bare fine-structure constant o
in the model is not the fine-structure constant «,,, which is experimentally observed.

The physical fine-structure constant is defined according to the formula
«

1+ aBy’

so that formula (3.27) matches with the limit at infinity of a Coulomb potential
induced by a total charge equal to Z — q.

Von(z) ~ (3.27)

(3.29)

Oéph =
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Modifying the definition of the fine-structure constant affects in turn the definition
of the potential V,;, in the sense that this potential must be equal to

pph(y)
Vou(z) = / dy, 3.30

Ph<x) o R3 |l’—y| Y ( )
where pp, refers to the total charge density which is experimentally observed. In
view of (3.26), one has to admit that the value of ppy, is equal to

QphfPph = Qph (’/ - qu)' (3.31)

A natural question is to ask for the physical relevance of the quantities ), and
Pph- Using Quantum Electrodynamics, one can compute a power series of p,, with
respect to apn (tending to 0), and check that the resulting computations are in
agreement with physical measurements. In the case of the reduced Bogoliubov-
Dirac-Fock model, one can ask for a similar property: does it remain possible to
compute an expansion of py, when ap, — 0, and to verify the consistence of the
expansion with respect to the one provided by Quantum Electrodynamics ? The
answer is positive provided one introduces a multiplicative renormalization as in
Quantum Electrodynamics.

As a matter of fact, our model still contains an ultraviolet cut-off A whose value
is unknown. In Quantum Electrodynamics, multiplicative renormalization consists
in fixing the value of A so that the replacement of the bare fine-structure constant
a by the physical one ap, amounts to a change of physical units (see [10] for more
details). In practice, the value of apy, is set equal to

app = Z3Q, (3.32)

where Z3 is a fixed positive number. The computations of the power series of ppp
with respect to ap, are made for Zs fixed. This amounts to considering A as a
function of ap, and Zs according to the identity

apnB) = 1— Zs. (3.33)

The coefficients of the resulting power series are surprisingly independent of the
value of Zs. In other words, the perturbative computation of the density ppp is
independent of the ultraviolet cut-off A provided it is fixed according to (3.33).
Describing perturbatively the polarized vacuum or an electronic structure with N
electrons does not really require to set the value of A.

This property remains true for the polarized vacuum when it is described by the
reduced Bogoliubov-Dirac-Fock model.

Theorem 3 ([18]). Let m € N and v € L*(R?) N C(R?) such that
/ In (14 %)) "5 (k)2 dk < +oo.
R3

We denote by ppn(apn, Z3), the physical density associated to the minimizer Q). of
the energy Egpp on Qa according to formulae (3.29), (3.31) and (3.32)

(1) Let 0 < € < 1/2. There exist two positive numbers K and a, depending only on
m, € and v, and a family of functions (Vy)o<n<m in L2(R3) N C(R3), such that

Poh(Qph, Z3) — Z Vo ph < Ko/”“, (3.34)
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forany 0 < apy < a and any e < Z3 <1 —e.
(i) The function vy is identically equal to v, while the functions v, are inductively

defined as

n=U), and v, =UVy_1)+ Z Z F; (z/m, . an), (3.35)

j=3 ni+-+n;=n—j

form > 2. In this expression, U refers to the Uehling operator defined as the Fourier
multiplier corresponding to the function

2 1 2 _ 2 19 — 2 4+ k]2 4+ k|2 + |k
U(k):\k\/ L-5 5lk[2 ||(|/<;|2—2)1n(*/ || Il)‘

dr Jo 14 BEA=2) 7T oplk[2 0 3w|k[? JA+ k2 — |K|
(3.36)
The nonlinear maps Fj(ju1, ..., pj) are equal to the charge densities of the operators

0 )_1 +oo ] 11[<*1 1 )d
j:uh-..a,uj _27T e Dm’(]_’_inn:l Hn, || Dm70+/l'r] U
(1i1) In particular, the functions v, do not depend on Zs, but only on the external
charge density v.

Beyond the fact that they do not depend on Z3, the values of the densities v,
are consistent with the perturbative computations of Quantum Electrodynamics.
The function vq is equal to the external charge density v. This is exactly the total
charge density of the system in the non-relativistic case. The function v, induces a
Coulomb potential equal to the Uehling potential (see [44, 49]) given by

1 a2, [t 2 1 v
Vien(z) = a2y v = Tl = —ph/l (t* — 1)% ( + ) </}R3 e_2|””_yt|(y) dy) dt.

3m 2t r — |
This potential is the first correction of the polarized vacuum density which is com-
puted by Quantum Electrodynamics.
The proof of Theorem 3 is based on equation (3.14). Assuming that condition
(3.15) is satisfied, the operator ¢, identically vanishes, so that we can invoke the
Cauchy formula to write

I e D S IV CE )
" 2m)so \Du+in Do +in U—jZIOé A '

Here, the operators ), ; are given by
1 ptoo 1 1 1 k
= —— —(1I — —1II ) d
@ 21 J—0oc Do+ i’f]( A (y pQ*) * |- ] A Do +in !

Their dependence with respect to the ultraviolet cut-off A is explicit through the
truncation operators II, defined as

—

HA(f) = AlB(O,A)?

for any f € L*(R3,C*).
Translated in terms of the Fourier transforms of the densities pg, and pg, ;,
expansion (3.37) writes as

7. (k) = —aBy(0) (7. (b) = (1) + B (v — p.))(K). (3.38)
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In this expression, the Fourier multiplier B, is equal to

1 Za(k) 22—z k| pZalr) 2 — 2
Ba(k) =~ [ 3 dz+ 5,
B =2 (1—22)(1+ B - 22) 2m Jo VIt Az,

where we have set

sy - VIR =T (P

r
It is useful to write the function By as

Ba(k) = By — Un(k),

where B} = B(0) is defined in (3.25) (see [38]).
The nonlinear map F) in (3.37) is defined as

FA(N) = Z FA,2n+1(:u7 s nu)? (339>
n>1
where Fy (g1, ..., pn) stands for the charge density of the operator

1 e 1 L 1 1 )

T, - pn) = 5= _— Ip py % — Mg ———
Aalin tn) 21 J—oo Dm,0+“7jl—[1( M [ 17" Dy + i

In particular, the functions F} ,, identically vanish when n is even (see [14]).
In the physical variables o, and ppn, equation (3.37) reduces to

(1= apnUa(k))ogi (k) + Fx (apnppn) (k) = 7 (k). (3.40)

with 75 (k) = D(K) 1po,24)(k). At this stage, it is possible to substitute in (3.40) the
function ppn by the formal expansion
Poh = D VAnOy,, (3.41)
n>0

and compute the value of the coefficients v, ,,. They are inductively given by

Uro = Un, Vnag =Ux(Vn),

and .
Uan = Un(VAn—1) + > Fy (VA,nla cee VA,n]),

j=3 ni+-+nj=n—j
for any n > 2. In this expression, U, refers to the Fourier multiplier associated to
the function U,.
Expansion (3.34) is then proved into two steps. The formal expansion in (3.41)
is first rigorously derived as a Taylor expansion of order m. This is summarized by
the inequality

< Kagitt, (3.42)

m
n
Pph — Z VAnGph
P L2ne

n=0
for apn small enough. On the other hand, one can check that the coefficients v, ,
converge at the limit A — +oo to the functions v, defined in (3.35). This follows
from the convergences of the functions Uy and Fj ; to U, respectively F}, in the
limit A — +o0. In particular, one can replace the coefficients vy ,, in (3.42) by the
functions v, so as to obtain expansion (3.34).

However, we are not interested in the limit A — 400, but in the limit a,, — 0,
with an ultraviolet cut-off A fixed so that Z3 = 1 — o, By remains constant. This
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last assumption is the crucial ingredient in the proof. In view of (3.28), this amounts
to assuming that
371'23

205ph

A ~ exp (3.43)
when ap, — 0. As a consequence, the Taylor series with respect to ap, of any
negative powers of A identically vanish. In other words, terms controlled by inverse
powers of A play no role in the expansion of p,, with respect to apy. In particular,
one can check that

HVA,n Vn”LQQC < KQm+1 n’

for any 0 < n < m. Expansion (3.34) follows combining with (3.42).

To conclude the derivation of Theorem 3, notice that the dependence on Z3 is
entirely contained in (3.43), so that it vanishes when a Taylor expansion of an inverse
power of A is performed. This explains why the coefficients v,, do not depend on Z3.

4. The Pauli-Villars regulated model

4.1. Formal derivation

A major restriction in the (reduced) Bogoliubov-Dirac-Fock model lies in its purely
electrostatic nature which prevents, for instance, from describing the role played by
photons in the vacuum polarization. Our goal is now to explain, at least formally,
how to derive a more general Hartree-Fock model taking into account some features
of the photons as well as of external magnetic fields. We refer to [16] for more details
(see also [33]).

The main difficulty arises in the choice of the regularization which we have to
introduce in order to define the model properly. Recall that the formal Hartree-
Fock energy for describing the polarized vacuum in the Coulomb gauge may be
written according to (2.5) as

2

Ac _ B € Py-1/2(2) py—1/2(Y)
5 ( 7A) =tr (‘Dm,(f(‘/ext,A“rAext)(’y 1/2>) + 5 /R3 RS |{L‘ —_ y| dx dy

v = 1/2)(x,y) 1 2
-5 /RS/RB dxdy+§/RS\cur1A(a:)\ dx.

'l

The derivation of the (reduced) Bogoliubov-Dirac-Fock model from this energy con-
sists in omitting some terms on one hand, introducing a regularization on the other
hand. The regularization is based on the introduction of an ultraviolet cut-off A in
the Fourier space. This choice breaks the magnetic gauge invariance corresponding
to replace A by A + Vo, which is used in Quantum Electrodynamics to eliminate
some divergences in the perturbative computations. As a result, a relevant model
including photons and external magnetic fields cannot rely on a sharp ultraviolet
cut-off.

In order to derive an alternative model, it is convenient to express the direct
electrostatic term in (2.5) in terms of the Coulomb potential

07—1/2(3/)
V., - P20 90 g,
Y 1/2([E) € R3 |I'—y| Y

IV-20



according to the formula
2

¢ P771/2(3:)p~171/2(y)d du — / Vv _1/ vV 5
9 Jus Jus iz — g vay=e [ Pr-12Vy-1/2 = o Rgl —1y2

Since the potential V,_; /» solves the maximization problem

1 1
€/RS pr-172 V12 = o /Rg IVV, 12 = sup {Q/RS pr-12V — o /RS |VV|2}7

we can write the formal energy in (2.5) as

Eqst(y, A) = sup LE5 (7, A).

where we have set A = (V, A). In this formula, the formal Hartree-Fock Lagrangian
EAe’“ is given by

| —1/2)(z, y)|?
EAex ( ) =1tr (Dm,e(A-i-Aext)( 1/2 2 \43 /Rg dm dy

|z =y
1 2 2
+ 877/]1%3 <| curl A(z)| — |[VV ()] )dx.

We can also introduce a reduced Lagrangian omitting the exchange electrostatic
term according to the formula

Aext — 1 2 2
L7 A) =tr (Dmeasano (= 1/2) + o [ (Jewl @) = [V (@) ) da.

In the sequel, we restrict our attention to the reduced formalism. To our knowledge,
the analysis of the original model remains largely open (see [16] for more details).
The polarized vacuum is constructed as a minimizer of the formal reduced energy

Ei(v, A) = sup L2507, A),

T

with respect to the one-body density matrix « and the classical photon field A. The
operator vy is an orthogonal projector as before, while the field A is divergence free
due to the Coulomb gauge. In case of existence, a minimizer (7., A.) is solution to
the self-consistent equations

Y = X(—00,0] (Dm,e(A*JrAcxt)),
_AA* =47 6j7*—1/27 (4 1)
—AV, =dmepy 1),

le A* = le Aext = 0

In this expression, the charge density p,, 1/ and the charge current j,, 1/, are given
by

pre12(@) = tres (7 = 1/2)(,0)) and j.-1po(e) = tres (. = 1/2)(a,0)),

where (7. —1/2)(x, y) refers as above to the (formal) kernel of the operator ~, —1/2.
The first equation in (4.1) is consistent with the picture of the Dirac sea since the
minimizer v, is the negative spectral projector of the Fock operator Dy, ¢4, +A4...)-
The equations for the electromagnetic four-potential A, = (V,, A,) are well-known
in the Physics literature (see e.g. [11]).
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Regarding the construction of electronic structures with NV electrons, a charge
constraint of the form

tr (7 - 1/2) =N,
is added as for the reduced Bogoliubov-Dirac-Fock model. The equations for the
minimizers (yy, Ay) write as

Y = X(-oomn] (Dme(An-+40) )
—AAN =4m ey —1/2,
—AVy =4mepyy_1/2,
div Ay = div Ao = 0,

where py is the Fermi level of the electronic structure. According to the pic-
ture of the Dirac sea, the physical electrons are identified to the projector 'yjpvh =
X(0,un](Dm.e(Ay+A40x)), While the virtual electrons of the polarized vacuum are rep-
resented by the projector ¥ = X(_oo,o](Dm,e( An+ Aext))- The model describes a
positronic structure with |/N| positrons when N is a negative integer. In the se-
quel, we focus on the construction of the polarized vacuum. Constructing electronic
or positronic structures also remains an open problem.

Instead of maximizing the Lagrangian L2475 (7, A) with respect to V' and then
minimizing the resulting quantity with respect to v and A, one can follow the
alternative strategy which consists in minimizing first with respect to v, and then
looking for a saddle point with respect to V' and A. We do not claim that we
are solving exactly the same problem in this way, but this alternative strategy
provides a polarized vacuum which is consistent with the self-consistent equations
(4.1) (see Theorem 5). Moreover, the problem is simplified. The unique minimizer
of the minimization problem

inf L4757, A), (1.2)
is indeed explicitly given by

YA = X(=o00,0] (Dm,e(A-‘rAext))?

with a value for the minimum equal to

1 2 2
+87T/RB (|eurl A2 - [VV]2).

In order to construct the polarized vacuum, it only remains to solve a min-max
problem which only depends on V' and A, namely

1 2 2
+§/Rs (|Cur1A| —|VV] )},

where |T| stands for the absolute value of the operator T.

At this stage, it is necessary to acknowledge that most of the previous discussion
is only formal. We now have to introduce regularization techniques from Quan-
tum Electrodynamics in order to define a rigorous model. The first element in this
direction is reminiscent from the (reduced) Bogoliubov-Dirac-Fock model. When
A = A = 0, the negative spectral projector P, of the free Dirac operator
formally solves the problem (4.2). However, the value of the minimum is equal to

_ 1
inf L, A) = —5tr | DAt A

) 1
min max { 3 tr ‘Dm,e(A+Aext)

1
. 0 _
H%f E'I’HF(’Y’ O) - 2 tr ‘Dm,O

)
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which is an infinite quantity. In order to deal with finite quantities, and since the sit-
uation under our consideration corresponds to the free vacuum, we define a relative
energy according to the formula

Ao A) = ;tr (\Dm,o

rel - ’Dm7e(A+Aext)

) + 817T/ (Jeurl A2 = [VV[2),

so that the free vacuum now has a vanishing energy. Since this amounts to adding an
infinite constant, this does not change the variational problem under our analysis,
but we can now hope that the quantity £4>(A) is finite provided A and Ay
belong to some suitable function space.

Actually, the energy remains divergent for large momenta. As a matter of fact,
the operator |Dy, 0| — |Dime(A+A4eq)| 15 Dot trace class when A + Ae # 0, so that
its trace is not well-defined (see [37] for more details). In order to remove these
divergences, an ultraviolet cut-off is necessary. Various techniques from Quantum
Electrodynamics are available. Our choice is to rely on a regularization proposed by
Pauli and Villars in [39], which consists in introducing the functional

)) + 817T/]R3 (|cu1"lA|2 — |VV|2>.

(4.3)
In this expression, the index 7 = 0 corresponds to the physical electron-positron
field. In particular, mo = m is the (bare) mass of the electron. The indices j = 1
and j = 2 describe fictitious heavy particle fields. Their role is to remove the worst
ultraviolet divergences (the linear ones to be more precise). In order to reach this
goal, it is well-known (see [39]) that the coefficients ¢; and the masses m; must fulfil
the two conditions

SAext(A) — ;tr (zJ:Cj (‘ijp) — ‘ij,e(A+Aext)
j=0

J J
> e = qui = 0. (4.4)
=0 =0

At least two additional distinct masses m; and msy are therefore necessary. In the
sequel, we fix J = 2 and ¢y = 1. For this choice, the condition (4.4) is equivalent to
mg —mj

5 5 and ¢ = —; 5
ms — mj ms — mj3

2 2
mi —m
o = 1 0

In the limit m; — +o00 and my — +o00, the regularization does not prevent
a logarithmic divergence which is identical to the divergence of the constant By
n (3.28) (see Proposition 4). The divergence is best understood in terms of the
averaged ultraviolet cut-off A defined as

log(A?) = Z c;log(m (4.5)

The value of A does not uniquely determlne the masses m; and ms. In practice, they
are chosen as functions of A such that the coeflicients ¢; and ¢; remain bounded
when A — +o0.

In the Coulomb gauge, the Pauli-Villars regulated energy SP ot is rigorously well-
defined under the natural conditions that the fields B = curl A, By = curl Aey,

E = —VV and Eey = —VVg are square integrable (see Proposition 4). The
polarized vacuum is described using a solution to the min-max problem
Aext
min max & EHv(A). (4.6)
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More precisely, it is identified to the projector

vac

TN = X(—00,0] (Dmo,e(A*+Aext))

where A, = (Vi, A.) is a saddle point for the problem (4.6). One can guarantee
the existence of such a saddle point at least when the external electromagnetic field
Fioii = (Eext, Bext) is weak enough.

4.2. Construction of the polarized vacuum

We now define properly the Pauli-Villars regulated energy in (4.3) before solving
the min-max problem (4.6). The natural framework for defining the energy Efg* is
provided by the Coulomb-gauge homogeneous Sobolev space

L (R?) = {A — (V,A) € LS(R? RY), st. divA =0
and F = (—VV,curl A) € L2(R3,R6)},
which is an Hilbert space for the norm
[AIZ oy = IV gy + [ cturl A2y = [F e

When A € H} (R?), the integral in (4.3) is well-defined, but we have to provide a
rigorous meaning to the first term in (4.3). This amounts to defining properly the
functional

1

Fov(A) =5 ji (| Do

for an arbitrary four-potential A € H} (R?). In this direction, we can establish the
next proposition.

- ‘ij,A

), (4.7)

Proposition 4 ([16]). Assume that the coefficients ¢; and the masses m; satisfy

2

=1, mg>my >mp>0 and ch:chm?:O. (4.8)
j=0 '
(1) Let
1 2
Ta= q(‘DmJ ‘D’”j"“D’ (4.9)
Jj=

Given any A € L'(R®) N H}, (R?), the operator tres Ty is trace class on L*(R?,C).
In particular, the quantity Fpy(A) is well-defined by the expression

.va(A) =1tr (tr@4 TA) (410)
(u) The functional Fpy can be uniquely extended to a continuous mapping on
Héiv(Rg)' .
(i17) Let A € H}, (R?). We have

Fpv(A) = Fo(F) +R(A), (4.11)
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where F' = (E, B), with E = —VV and B = carl A. The functional R is continuous
on H} (R3) and satisfies

4 = o)l 6

L (;m;MF o (4.12)

2 .
R <k ( (29
j=0
for a universal positive number K.

(iv) The functional Fy is the non-negative and bounded quadratic form on L*(R3 R?)
given by

1 ~ 2 ~ 2
Fo(F) = &T/RSM(/;)QB(k)‘ —~ |B(k) )dk, (4.13)
where ,
92 1
kﬁz——}jq/1Ml—uﬂ%(mﬁ+M1—wa%m. (4.14)
Tz o
The function M is positive and satisfies the uniform estimate
2log(A
0 < M(k) < M(0) = §i>, (4.15)

where A is given by (4.5).

The proof of Proposition 4 relies on a perturbative expansion of the operator T4.
Invoking the formula

1 2w W
T /(2— )d,
| | o T+iw+T—iw v

the operator TA may be written as

iw iw iw
e L — e
47 Z DmJA—l-’Lw ij,A_iw ij70+iw+ij,g—2w N

Expandmg w1th respect to the powers of A leads to the expression

TA—ZT )+ T4(A)

Z/ W, A) + Ry (—w, A)) dw+417T/R(Rg(w,A)+Rg(—w,A)> do,

with

for 1 <n <5, and

, iw 1 6
R(w, A) :z::cj I - ‘ <(a'A_v)ij70+iw) .
Due to the conditions (4.8), the operators trea T,,(A) and trea TG (A) are trace class
on L*(R?) when A belongs to L'(R?) N [T}, (R?). The quantity Fpy(A) in (4.10) is
therefore well-defined. Moreover, it depends Hélder continuously on A € HL (R?),
so that it can be extended to the space I (R?).

Let us emphasize the introduction of the C*-trace here. The operators T,,(A) and
T;(A) are probably not trace class without taking first the C*-trace (except when
A = 0). Defining Fpy as in (4.10) extends the formal definition (4.7) to the case
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where T4 is not a trace-class operator. The two definitions remain identical when
T4 is trace class.

Concerning the second order operator tres T5(A), an explicit computation leads
to the formula

tr (tres To(A)) = Fo(F),

where F5(F) is defined in (4.13). The Fourier multiplier M in (4.13) describes the
linear response of the virtual electrons in the polarized vacuum. In view of the
convergence

lim

A—oo

(210gA - M(k)> — U k), (4.16)

where U is the Uehling multiplier given by (3.36), the function M appears as the
Pauli-Villars equivalent of the function B, in the reduced Bogoliubov-Dirac-Fock
model. This similarity in the two models results from the gauge and relativistic
invariances in Quantum Electrodynamics.

It follows from (4.16) that the self-consistent equations of the charge and current
densities corresponding to a (possible) solution A, to the min-max problem (4.6)
are very similar to the equation (3.38) for the charge density pg, of a minimizer
Q. of the reduced Bogoliubov-Dirac-Fock model. Even if this was not done in [16],
the renormalization technique applied to define a physical charge density pp, and to
compute its perturbative expansion with respect to apy in the case of the reduced
Bogoliubov-Dirac-Fock model is likely to work the same with the Pauli-Villars reg-
ulated model corresponding to the energy 5134\‘}"“.

This however requires to construct first a solution A, to the min-max problem
(4.6). The construction is possible when the external electromagnetic four-potential
A, is small enough. In this case, one can deduce from the expression of the second-
order functional F; in (4.13) that the energy 134{}“ owns a local saddle point geometry
close to the four-potential A = 0. The existence of a (local) solution to the min-max

problem (4.6) follows using tools from convex analysis.

Theorem 5 ([16]). Assume that the coefficients c; and the masses m; satisfy the
conditions (4.8).

(Z) There exists a positive number r such that, given any four-potential Aeyy €
H} (R3) such that

v (4.17)

el Aexell i1 msy <

8
there exists a unique solution A, € H} (R®) to the min-max problem
En(A,) = max inf Epe(A)
IVVIi2 <20 [|curl Al| o< 2470 (4.18)
= min sup e (A). '
chrlA||L2<@ ||V\/||L2<r\4/1:TO
(1i) When Aey = 0, the solution A, is equal to 0.
(7i1) The four-potential A, is a solution to the nonlinear equations
—AV, = 4re p,,
{ _AA, = dre .. (4.19)
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where p. € C(R?) and j. € C(R?) are defined as
pi(x) = [tr@ Q*} (x,z) and ja(z)= [tr@; aQ*} (x,x). (4.20)

In this expression, the function Q.(x,y) refers to the kernel of the locally trace-class
operator

2
Q* - Z Cj X(—oo,()] (ij,e(A*—l—Aext)) . (421>
7=0

According to the previous derivation of the Pauli-Villars regulated energy, the
polarized vacuum is identified to the projector

oV = X(—00,0] (Dmo,E(A*+Aext))'
Its construction is only local and only available for small enough external electro-
magnetic fields.

To our knowledge, the existence of a global solution to the min-max problem (4.6)
remains an open problem. A first attempt to answer this question could concern the
property that A = 0 is the unique global saddle point of the energy &£2y.

The construction of a (local) minimizer in large external electromagnetic fields is
another appealing problem, in particular since it certainly requires to understand
the phenomenon of production of electron-positron pairs (see [42] for a first analysis
of this phenomenon).
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