In this note, we first present the scattering problem for the Vlasov–Maxwell system. Then, by studying the linearised system, we explain why the distribution function merely exhibits, in general, a modified scattering dynamic.
@incollection{JEDP_2023____A2_0, author = {L\'eo Bigorgne}, title = {Modified scattering for the small data solutions to the {Vlasov{\textendash}Maxwell} system}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:2}, pages = {1--15}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2023}, doi = {10.5802/jedp.673}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/} }
TY - JOUR AU - Léo Bigorgne TI - Modified scattering for the small data solutions to the Vlasov–Maxwell system JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2023 SP - 1 EP - 15 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/ DO - 10.5802/jedp.673 LA - en ID - JEDP_2023____A2_0 ER -
%0 Journal Article %A Léo Bigorgne %T Modified scattering for the small data solutions to the Vlasov–Maxwell system %J Journées équations aux dérivées partielles %Z talk:2 %D 2023 %P 1-15 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/ %R 10.5802/jedp.673 %G en %F JEDP_2023____A2_0
Léo Bigorgne. Modified scattering for the small data solutions to the Vlasov–Maxwell system. Journées équations aux dérivées partielles (2023), Talk no. 2, 15 p. doi : 10.5802/jedp.673. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/
[1] Claude Bardos; Pierre Degond Global existence for the Vlasov–Poisson equation in space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | Numdam | MR | Zbl
[2] Léo Bigorgne Sharp asymptotic behavior of solutions of the Vlasov–Maxwell system with small data, Commun. Math. Phys., Volume 376 (2020) no. 2, pp. 893-992 | DOI | MR | Zbl
[3] Léo Bigorgne Sharp asymptotics for the solutions of the three-dimensional massless Vlasov–Maxwell system with small data, Ann. Henri Poincaré, Volume 22 (2021) no. 1, pp. 219-273 | DOI | MR | Zbl
[4] Léo Bigorgne Global existence and modified scattering for the small data solutions to the Vlasov–Maxwell system (2022) (To appear in Anal. PDE) | arXiv
[5] Léo Bigorgne Scattering map for the Vlasov–Maxwell system around source-free electromagnetic fields (2023) | arXiv
[6] Léo Bigorgne; Anibal Velozo Ruiz; Renato Velozo Ruiz Modified scattering of small data solutions to the Vlasov–Poisson system with a trapping potential (2023) | arXiv
[7] Nicolas Brigouleix; Daniel Han-Kwan The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds, Ann. Fac. Sci. Toulouse, Math., Volume 31 (2022) no. 2, pp. 545-594 | DOI | Numdam | MR | Zbl
[8] Sun-Ho Choi; Seung-Yeal Ha Asymptotic behavior of the nonlinear Vlasov equation with a self-consistent force, SIAM J. Math. Anal., Volume 43 (2011) no. 5, pp. 2050-2077 | DOI | MR | Zbl
[9] Sun-Ho Choi; Soonsik Kwon Modified scattering for the Vlasov–Poisson system, Nonlinearity, Volume 29 (2016) no. 9, pp. 2755-2774 | DOI | MR | Zbl
[10] Ronald J. DiPerna; Pierre-Louis Lions Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757 | DOI | MR | Zbl
[11] Patrick Flynn; Zhimeng Ouyang; Benoit Pausader; Klaus Widmayer Scattering map for the Vlasov–Poisson system, Peking Math. J., Volume 6 (2023) no. 2, pp. 365-392 | DOI | MR | Zbl
[12] Robert T. Glassey The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | DOI | MR
[13] Robert T. Glassey; Jack Schaeffer Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 | DOI | MR | Zbl
[14] Robert T. Glassey; Jack Schaeffer On the “one and one-half dimensional” relativistic Vlasov–Maxwell system, Math. Methods Appl. Sci., Volume 13 (1990) no. 2, pp. 169-179 | DOI | MR | Zbl
[15] Robert T. Glassey; Jack Schaeffer The “two and one-half-dimensional” relativistic Vlasov Maxwell system, Commun. Math. Phys., Volume 185 (1997) no. 2, pp. 257-284 | DOI | MR | Zbl
[16] Robert T. Glassey; Jack Schaeffer The relativistic Vlasov–Maxwell system in two space dimensions. I, II, Arch. Ration. Mech. Anal., Volume 141 (1998) no. 4, p. 331-354, 355–374 | DOI | MR | Zbl
[17] Robert T. Glassey; Walter A. Strauss Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal., Volume 92 (1986) no. 1, pp. 59-90 | DOI | MR | Zbl
[18] Robert T. Glassey; Walter A. Strauss Absence of shocks in an initially dilute collisionless plasma, Commun. Math. Phys., Volume 113 (1987) no. 2, pp. 191-208 | DOI | MR | Zbl
[19] Alexandru D. Ionescu; Benoit Pausader; Xuecheng Wang; Klaus Widmayer Nonlinear Landau damping for the Vlasov–Poisson system in : the Poisson equilibrium (2022) | arXiv
[20] Alexandru D. Ionescu; Benoit Pausader; Xuecheng Wang; Klaus Widmayer On the Asymptotic Behavior of Solutions to the Vlasov–Poisson System, Int. Math. Res. Not. (2022) no. 12, pp. 8865-8889 | DOI | MR | Zbl
[21] Alexandru D. Ionescu; Benoit Pausader; Xuecheng Wang; Klaus Widmayer On the stability of homogeneous equilibria in the Vlasov–Poisson system on , Class. Quant. Grav., Volume 40 (2023) no. 18, 185007, 32 pages | DOI | MR
[22] Pierre-Louis Lions; Benoit Perthame Propagation of moments and regularity for the -dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR
[23] Jonathan Luk; Robert M. Strain A new continuation criterion for the relativistic Vlasov–Maxwell system, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1005-1027 | DOI | MR | Zbl
[24] Jonathan Luk; Robert M. Strain Strichartz estimates and moment bounds for the relativistic Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 1, pp. 445-552 | DOI | MR | Zbl
[25] Toan T. Nguyen Landau damping and the survival threshold (2023) | arXiv
[26] Stephen Pankavich Asymptotic dynamics of dispersive, collisionless plasmas, Commun. Math. Phys., Volume 391 (2022) no. 2, pp. 455-493 | DOI | MR | Zbl
[27] Stephen Pankavich; Jonathan Ben-Artzi Modified Scattering of Solutions to the Relativistic Vlasov–Maxwell System Inside the Light Cone (2023) | arXiv
[28] Benoit Pausader; Klaus Widmayer; Jiaqi Yang Stability of a point charge for the repulsive Vlasov–Poisson system (2022) | arXiv
[29] Klaus Pfaffelmoser Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl
[30] Michael Reed; Barry Simon Methods of modern mathematical physics. III. Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR
[31] Gerhard Rein Generic global solutions of the relativistic Vlasov–Maxwell system of plasma physics, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 41-78 | DOI | MR | Zbl
[32] Gerhard Rein Global weak solutions to the relativistic Vlasov–Maxwell system revisited, Commun. Math. Sci., Volume 2 (2004) no. 2, pp. 145-158 | DOI | MR | Zbl
[33] Jack Schaeffer A small data theorem for collisionless plasma that includes high velocity particles, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 1-34 | DOI | MR | Zbl
[34] Xuecheng Wang Global solution of the 3D Relativistic Vlasov–Maxwell system for large data with cylindrical symmetry (2022) | arXiv
[35] Xuecheng Wang Propagation of regularity and long time behavior of the 3 massive relativistic transport equation II: Vlasov–Maxwell system, Commun. Math. Phys., Volume 389 (2022) no. 2, pp. 715-812 | DOI | MR | Zbl
[36] Dongyi Wei; Shiwu Yang On the 3D relativistic Vlasov–Maxwell system with large Maxwell field, Commun. Math. Phys., Volume 383 (2021) no. 3, pp. 2275-2307 | DOI | MR | Zbl
[37] Stephen Wollman An existence and uniqueness theorem for the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume 37 (1984) no. 4, pp. 457-462 | DOI | MR | Zbl
Cited by Sources: