Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Journées équations aux dérivées partielles
  • Year 2023
  • Talk no. 3
  • Next
Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails
Emeric Bouin1
1 CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France.
Journées équations aux dérivées partielles (2023), Talk no. 3, 7 p.
  • Abstract

This expository article, written for the proceedings of the Journées EDP 2023, presents mainly joint works with Dolbeault and Laflèche [1] and Mouhot [3]. We will review some results about long time behaviour of linear kinetic equations for which the microscopic equilibrium (that is, the kernel of the reorientation operator) is typically a density with polynomial decay. There will be no space confinement and the reorientation operator could be of scattering, Fokker–Planck or Levy–Fokker–Planck types. We will first present a spectral approach a la Ellis and Pinsky that yields to a unified treatment of the macroscopic limits for this kind of equations and then focus on re-shaping the Dolbeault–Mouhot–Schmeiser L 2 -hypocoercivity method to get explicit rates of decay to zero in suitable weighted norms.

  • Article information
  • Export
  • How to cite
Published online: 2024-07-22
DOI: 10.5802/jedp.674
Author's affiliations:
Emeric Bouin 1

1 CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France.
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2023____A3_0,
     author = {Emeric Bouin},
     title = {Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:3},
     pages = {1--7},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.674},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.674/}
}
TY  - JOUR
AU  - Emeric Bouin
TI  - Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails
JO  - Journées équations aux dérivées partielles
N1  - talk:3
PY  - 2023
SP  - 1
EP  - 7
PB  - Réseau thématique AEDP du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.674/
DO  - 10.5802/jedp.674
LA  - en
ID  - JEDP_2023____A3_0
ER  - 
%0 Journal Article
%A Emeric Bouin
%T Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails
%J Journées équations aux dérivées partielles
%Z talk:3
%D 2023
%P 1-7
%I Réseau thématique AEDP du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.674/
%R 10.5802/jedp.674
%G en
%F JEDP_2023____A3_0
Emeric Bouin. Hydrodynamic limits and hypocoercivity for kinetic equations with heavy tails. Journées équations aux dérivées partielles (2023), Talk no. 3, 7 p. doi : 10.5802/jedp.674. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.674/
  • References
  • Cited by

[1] Emeric Bouin; Jean Dolbeault; Laurent Lafleche Fractional hypocoercivity, Commun. Math. Phys., Volume 390 (2022) no. 3, pp. 1369-1411 | DOI | MR | Zbl

[2] Emeric Bouin; Laura Kanzler; Clément Mouhot Quantitative fluid approximation with more invariants (2023) (in progress)

[3] Emeric Bouin; Clément Mouhot Quantitative fluid approximation in transport theory: a unified approach, Probability and Mathematical Physics, Volume 3 (2022) no. 3, pp. 491-542 | DOI | MR | Zbl

[4] Patrick Cattiaux; Elissar Nasreddine; Marjolaine Puel Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: the critical case, Kinet. Relat. Models, Volume 12 (2019) no. 4, pp. 727-748 | DOI | MR | Zbl

[5] Jean Dolbeault; Clément Mouhot; Christian Schmeiser Hypocoercivity for Linear Kinetic Equations Conserving Mass, Trans. Am. Math. Soc., Volume 367 (2015) no. 6, pp. 3807-3828 http://www.ams.org/tran/2015-367-06/s0002-9947-2015-06012-7/ (Accessed 2018-09-13) | DOI | MR | Zbl

[6] Richard S. Ellis; Mark A. Pinsky The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl., Volume 54 (1975), pp. 125-156 | MR | Zbl

[7] Nicolas Fournier; Camille Tardif Anomalous diffusion for multi-dimensional critical kinetic Fokker–Planck equations, Ann. Probab., Volume 48 (2020) no. 5, pp. 2359-2403 | DOI | MR | Zbl

[8] Nicolas Fournier; Camille Tardif One dimensional critical kinetic Fokker-Planck equations, Bessel and stable processes, Commun. Math. Phys., Volume 381 (2021) no. 1, pp. 143-173 | DOI | MR | Zbl

[9] Gilles Lebeau; Marjolaine Puel Diffusion approximation for Fokker Planck with heavy tail equilibria: a spectral method in dimension 1, Commun. Math. Phys., Volume 366 (2019) no. 2, pp. 709-735 | DOI | MR | Zbl

[10] Elissar Nasreddine; Marjolaine Puel Diffusion limit of Fokker-Planck equation with heavy tail equilibria, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 1-17 | DOI | Numdam | MR | Zbl

[11] Basil Nicolaenko Dispersion Laws for plane wave propagation, The Boltzmann Equation (A. Grünbaum, ed.), Courant Institute, 1971

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us