Modified scattering for the small data solutions to the Vlasov–Maxwell system
Journées équations aux dérivées partielles (2023), Exposé no. 2, 15 p.

In this note, we first present the scattering problem for the Vlasov–Maxwell system. Then, by studying the linearised system, we explain why the distribution function merely exhibits, in general, a modified scattering dynamic.

Publié le :
DOI : 10.5802/jedp.673

Léo Bigorgne 1

1 Institut de recherche mathématique de Rennes Université de Rennes - Campus Beaulieu 35 700 Rennes France
@incollection{JEDP_2023____A2_0,
     author = {L\'eo Bigorgne},
     title = {Modified scattering for the small data solutions to the {Vlasov{\textendash}Maxwell} system},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:2},
     pages = {1--15},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.673},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/}
}
TY  - JOUR
AU  - Léo Bigorgne
TI  - Modified scattering for the small data solutions to the Vlasov–Maxwell system
JO  - Journées équations aux dérivées partielles
N1  - talk:2
PY  - 2023
SP  - 1
EP  - 15
PB  - Réseau thématique AEDP du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/
DO  - 10.5802/jedp.673
LA  - en
ID  - JEDP_2023____A2_0
ER  - 
%0 Journal Article
%A Léo Bigorgne
%T Modified scattering for the small data solutions to the Vlasov–Maxwell system
%J Journées équations aux dérivées partielles
%Z talk:2
%D 2023
%P 1-15
%I Réseau thématique AEDP du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/
%R 10.5802/jedp.673
%G en
%F JEDP_2023____A2_0
Léo Bigorgne. Modified scattering for the small data solutions to the Vlasov–Maxwell system. Journées équations aux dérivées partielles (2023), Exposé no. 2, 15 p. doi : 10.5802/jedp.673. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.673/

[1] Claude Bardos; Pierre Degond Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | Numdam | MR | Zbl

[2] Léo Bigorgne Sharp asymptotic behavior of solutions of the 3d Vlasov–Maxwell system with small data, Commun. Math. Phys., Volume 376 (2020) no. 2, pp. 893-992 | DOI | MR | Zbl

[3] Léo Bigorgne Sharp asymptotics for the solutions of the three-dimensional massless Vlasov–Maxwell system with small data, Ann. Henri Poincaré, Volume 22 (2021) no. 1, pp. 219-273 | DOI | MR | Zbl

[4] Léo Bigorgne Global existence and modified scattering for the small data solutions to the Vlasov–Maxwell system (2022) (To appear in Anal. PDE) | arXiv

[5] Léo Bigorgne Scattering map for the Vlasov–Maxwell system around source-free electromagnetic fields (2023) | arXiv

[6] Léo Bigorgne; Anibal Velozo Ruiz; Renato Velozo Ruiz Modified scattering of small data solutions to the Vlasov–Poisson system with a trapping potential (2023) | arXiv

[7] Nicolas Brigouleix; Daniel Han-Kwan The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds, Ann. Fac. Sci. Toulouse, Math., Volume 31 (2022) no. 2, pp. 545-594 | DOI | Numdam | MR | Zbl

[8] Sun-Ho Choi; Seung-Yeal Ha Asymptotic behavior of the nonlinear Vlasov equation with a self-consistent force, SIAM J. Math. Anal., Volume 43 (2011) no. 5, pp. 2050-2077 | DOI | MR | Zbl

[9] Sun-Ho Choi; Soonsik Kwon Modified scattering for the Vlasov–Poisson system, Nonlinearity, Volume 29 (2016) no. 9, pp. 2755-2774 | DOI | MR | Zbl

[10] Ronald J. DiPerna; Pierre-Louis Lions Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757 | DOI | MR | Zbl

[11] Patrick Flynn; Zhimeng Ouyang; Benoit Pausader; Klaus Widmayer Scattering map for the Vlasov–Poisson system, Peking Math. J., Volume 6 (2023) no. 2, pp. 365-392 | DOI | MR | Zbl

[12] Robert T. Glassey The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | DOI | MR

[13] Robert T. Glassey; Jack Schaeffer Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 | DOI | MR | Zbl

[14] Robert T. Glassey; Jack Schaeffer On the “one and one-half dimensional” relativistic Vlasov–Maxwell system, Math. Methods Appl. Sci., Volume 13 (1990) no. 2, pp. 169-179 | DOI | MR | Zbl

[15] Robert T. Glassey; Jack Schaeffer The “two and one-half-dimensional” relativistic Vlasov Maxwell system, Commun. Math. Phys., Volume 185 (1997) no. 2, pp. 257-284 | DOI | MR | Zbl

[16] Robert T. Glassey; Jack Schaeffer The relativistic Vlasov–Maxwell system in two space dimensions. I, II, Arch. Ration. Mech. Anal., Volume 141 (1998) no. 4, p. 331-354, 355–374 | DOI | MR | Zbl

[17] Robert T. Glassey; Walter A. Strauss Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal., Volume 92 (1986) no. 1, pp. 59-90 | DOI | MR | Zbl

[18] Robert T. Glassey; Walter A. Strauss Absence of shocks in an initially dilute collisionless plasma, Commun. Math. Phys., Volume 113 (1987) no. 2, pp. 191-208 | DOI | MR | Zbl

[19] Alexandru D. Ionescu; Benoit Pausader; Xuecheng Wang; Klaus Widmayer Nonlinear Landau damping for the Vlasov–Poisson system in 3 : the Poisson equilibrium (2022) | arXiv

[20] Alexandru D. Ionescu; Benoit Pausader; Xuecheng Wang; Klaus Widmayer On the Asymptotic Behavior of Solutions to the Vlasov–Poisson System, Int. Math. Res. Not. (2022) no. 12, pp. 8865-8889 | DOI | MR | Zbl

[21] Alexandru D. Ionescu; Benoit Pausader; Xuecheng Wang; Klaus Widmayer On the stability of homogeneous equilibria in the Vlasov–Poisson system on 3 , Class. Quant. Grav., Volume 40 (2023) no. 18, 185007, 32 pages | DOI | MR

[22] Pierre-Louis Lions; Benoit Perthame Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR

[23] Jonathan Luk; Robert M. Strain A new continuation criterion for the relativistic Vlasov–Maxwell system, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1005-1027 | DOI | MR | Zbl

[24] Jonathan Luk; Robert M. Strain Strichartz estimates and moment bounds for the relativistic Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 1, pp. 445-552 | DOI | MR | Zbl

[25] Toan T. Nguyen Landau damping and the survival threshold (2023) | arXiv

[26] Stephen Pankavich Asymptotic dynamics of dispersive, collisionless plasmas, Commun. Math. Phys., Volume 391 (2022) no. 2, pp. 455-493 | DOI | MR | Zbl

[27] Stephen Pankavich; Jonathan Ben-Artzi Modified Scattering of Solutions to the Relativistic Vlasov–Maxwell System Inside the Light Cone (2023) | arXiv

[28] Benoit Pausader; Klaus Widmayer; Jiaqi Yang Stability of a point charge for the repulsive Vlasov–Poisson system (2022) | arXiv

[29] Klaus Pfaffelmoser Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl

[30] Michael Reed; Barry Simon Methods of modern mathematical physics. III. Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR

[31] Gerhard Rein Generic global solutions of the relativistic Vlasov–Maxwell system of plasma physics, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 41-78 | DOI | MR | Zbl

[32] Gerhard Rein Global weak solutions to the relativistic Vlasov–Maxwell system revisited, Commun. Math. Sci., Volume 2 (2004) no. 2, pp. 145-158 | DOI | MR | Zbl

[33] Jack Schaeffer A small data theorem for collisionless plasma that includes high velocity particles, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 1-34 | DOI | MR | Zbl

[34] Xuecheng Wang Global solution of the 3D Relativistic Vlasov–Maxwell system for large data with cylindrical symmetry (2022) | arXiv

[35] Xuecheng Wang Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov–Maxwell system, Commun. Math. Phys., Volume 389 (2022) no. 2, pp. 715-812 | DOI | MR | Zbl

[36] Dongyi Wei; Shiwu Yang On the 3D relativistic Vlasov–Maxwell system with large Maxwell field, Commun. Math. Phys., Volume 383 (2021) no. 3, pp. 2275-2307 | DOI | MR | Zbl

[37] Stephen Wollman An existence and uniqueness theorem for the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume 37 (1984) no. 4, pp. 457-462 | DOI | MR | Zbl

Cité par Sources :