In this survey article, we present several constructions of invariants for 3-dimensional volume-preserving vector fields under volume-preserving diffeomorphisms. After introducing helicity, we focus on invariants constructed using knot theory, following Arnol’d’s strategy. Most invariants constructed in this way are actually very close to helicity, but we also present a few that are rather different. We conclude with some open questions.
@article{WBLN_2015__2__A2_0, author = {Pierre Dehornoy}, title = {Asymptotic invariants of 3-dimensional vector fields}, journal = {Winter Braids Lecture Notes}, note = {talk:2}, pages = {1--19}, publisher = {Winter Braids School}, volume = {2}, year = {2015}, doi = {10.5802/wbln.8}, mrnumber = {3705874}, zbl = {1428.37002}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.8/} }
TY - JOUR AU - Pierre Dehornoy TI - Asymptotic invariants of 3-dimensional vector fields JO - Winter Braids Lecture Notes N1 - talk:2 PY - 2015 SP - 1 EP - 19 VL - 2 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.8/ DO - 10.5802/wbln.8 LA - en ID - WBLN_2015__2__A2_0 ER -
Pierre Dehornoy. Asymptotic invariants of 3-dimensional vector fields. Winter Braids Lecture Notes, Volume 2 (2015), Talk no. 2, 19 p. doi : 10.5802/wbln.8. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.8/
[1] Akhmetev Petr M., Quadratic helicities and the energy of magnetic fields, Proc. Steklov Inst. Math. 278 (2012), 10–21. | DOI | MR
[2] Arnol’d Vladimir I., The asymptotic Hopf invariant and its applications, Proc. Summer School in Diff. Equations at Dilizhan, 1973 (1974), Evevan (in Russian); English transl. Sel. Math. Sov. 5 (1986), 327–345. | DOI | Zbl
[3] Arnol’d Vladimir I. and Khesin Boris, Topological methods in hydrodynamics, Appl. Math. Sci. 125, Springer (1998). | DOI
[4] Baader Sebastian, Asymptotic Rasmussen invariant, C. R. Acad. Sci. Paris 345 (2007) 225–228. | DOI | MR | Zbl
[5] Baader Sebastian, Asymptotic concordance invariants for ergodic vector fields, Comment. Math. Helv. 86 (2011), 1–12. | DOI | MR | Zbl
[6] Baader Sebastian and Marché Julien, Asymptotic Vassiliev invariants for vector fields, Bull. Soc. Math. France 140 (2012), 569–582. | DOI | MR | Zbl
[7] Birman Joan and Williams Robert, Knotted periodic orbits in dynamical systems I: Lorenz system, in S. Lomonaco Jr. ed., Low Dimensional Topology, Contemp. Math. 20 (1981), 1–60.
[8] Calabi Eugenio On the group of automorphisms of a symplectic manifold, in Problems in analysis, Symposium in honour of S. Bochner, R. Gunning ed., Princeton Univ. Press, Princeton (1970), 1–26. | DOI
[9] Cornfeld Isaac P., Fomin Sergei V., Sinai Yakov G., Ergodic Theory, Grundlehren der mathematischen Wissenschaften 245, Springer (1982), 486 pp. | DOI
[10] Dehornoy Pierre, Les nœuds de Lorenz, L’Enseign. Math. (2) 57 (2011), 211–280. | DOI
[11] Dehornoy Pierre, and Rechtman Ana, Asymptotic trunk for volume-preserving vector fields, in preparation. | DOI | MR | Zbl
[12] Enciso Alberto, Peralta-Salas Daniel, Torres de Lizaur Francisco, Helicity is the only integral invariant of volume-preserving transformations, arXiv:1602.04745. | DOI | MR | Zbl
[13] Fathi Albert, Transformations et homéomorphismes préservant la mesure. Systèmes dynamiques minimaux. Thèse Orsay (1980).
[14] Freedman Michael H. and He Zheng-Xu, Divergence-free fields: energy and asymptotic Crossing Number, Ann. of Math. (2) 134 (1991), 189–229. | DOI | MR | Zbl
[15] Gabai David, Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987), 479–536. | DOI | MR | Zbl
[16] Gambaudo Jean-Marc and Ghys Étienne, Signature asymptotique d’un champ de vecteurs en dimension 3, Duke Math. J. 106 (2001), 41–79. | DOI | MR | Zbl
[17] Gambaudo Jean-Marc, Knots, fluids, and flows, in Dynamique des difféomorphismes conservatifs des surfaces : un point de vue topologique, Panoramas & Synthèses 21 (2006), 53–103.
[18] Ghrist Robert W., Branched two-manifolds supporting all links, Topology 36 (1997), 423–448. | DOI | MR | Zbl
[19] Ghrist Robert W., Holmes Philip J., Sullivan Mike C., Knots and links in three-dimensional flows, Lect. Notes Math. 1654, Springer Verlag, 1997. | DOI | Zbl
[20] Ghys Étienne, Knots and dynamics, Proc. Internat. Congress of Mathematicians I, Eur. Math. Soc. (2007), 247–277. | DOI
[21] Ghys Étienne, L’attracteur de Lorenz, paradigme du chaos, Séminaire Poincaré XIV (2010), 1–52. | DOI
[22] Goussarov Mikhail, Polyak Michael, Viro Oleg, Finite-type invariants of classical and virtual knots, Topology 39 (2000), 1045–1068. | DOI | MR | Zbl
[23] von Helmholtz Hermann, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858), 25–55. | DOI
[24] Komendarczyk Rafal, The third order helicity of magnetic fields via link maps, Comm. Math. Phys. 292 (2009), 431–456. | DOI | MR | Zbl
[25] Komendarczyk Rafal, The third order helicity of magnetic fields via link maps. II, J. Math. Phys. 51 (2010). | DOI | MR | Zbl
[26] Komendarczyk Rafal and Volić Ismar, On volume-preserving vector fields and finite type invariants of knots, arXiv:1309.3361. | DOI | MR | Zbl
[27] Kudryavtseva Elena A., Conjugation invariants on the group of area-preserving diffeomorphisms of the disk, Math. Notes 95 (2014), 877–880. | DOI | MR | Zbl
[28] Kudryavtseva Elena A., Helicity is the only invariant of incompressible flows whose derivative is continuous in -topology, arXiv:1511.03746. | DOI | MR | Zbl
[29] Kuperberg Kristina, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2) 140 (1994), 723–732. | DOI | MR
[30] Kuperberg Greg and Kuperberg Kristina, Generalized counterexamples to the Seifert conjecture, Ann. of Math. (2) 144 (1996), 239–268. | DOI | MR
[31] Levine Jerome, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. | DOI | MR | Zbl
[32] Lorenz Edward N., Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963),130–141. | DOI | MR | Zbl
[33] Massey William S., Some higher order cohomology operations, in Symposium International de Topología Algebraica, La Universidad Nacional Autónama de Mexico and UNESCO, Mexico City, 1958, 145-154.
[34] Moffatt Keith, The degree of knottedness of tangle vortex lines, J. Fluid. Mech. 106 (1969), 117–129. | DOI | Zbl
[35] Moreau Jean-Jacques, Constantes d’un îlot tourbillonnaire en fluide parfait barotrope, C. R. Acad. Sci. Paris 252 (1961), 2810–2812. | Zbl
[36] Ozawa Makoto, Waist and trunk of knots, Geom. Dedicata 149 (2010), 85–94. | DOI | MR | Zbl
[37] Priest Eric R., Heating The Solar Corona By Magnetic Reconnection, in Proceedings of the VIIth International Conference held in Lindau, Germany, May 4Ð8, 1998, Plasma Astrophysics And Space Physics (1999), 77–100. | DOI | Zbl
[38] Rolfsen Dale, Knots and links, Publish or Perish (1976), 439pp. | DOI | Zbl
[39] Rössler Otto E., An equation for continuous chaos, Physics Letters 57 (1976), 397–398. | DOI | Zbl
[40] Seifert Herbert, Über das Geschlecht von Knoten, Math. Annalen 110 (1934), 571–592. | DOI | Zbl
[41] Silver Daniel, Knot theory’s odd origins, American Scientist 94 (2006), 158–165. | DOI
[42] Tait Peter Guthrie, On knots, Trans. Roy. Soc. Edin. 28 (1877), 145–190. | DOI
[43] Thomson William, On Vortex Atoms, Proc. Roy. Soc. Edinburgh 6 (1867), 94–105. | DOI
[44] Thurston Dylan P., Integral expressions for the Vassiliev knot invariants, (1999).
[45] Tristram Andrew G., Some cobordism invariants for links, Proc. Camb. Philos. Soc. 66 (1969), 251–264. | DOI | MR | Zbl
[46] Trotter Hale, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464–498. | DOI | MR | Zbl
[47] Tucker Warwick, A Rigorous ODE Solver and Smale’s 14th Problem, Found. Comput. Math. 2 (2002) 53–117. | DOI | MR | Zbl
[48] Verjovsky Alberto, and Vila Freyer Ricardo F., The Jones-Witten invariant for flows on a 3-dimensional manifold, Comm. Math. Phys. 163 (1994), 73–88. | DOI | MR | Zbl
[49] Vogel Thomas, On the asymptotic linking number, Proc. Amer. Math. Soc. 131 (2002), 2289–2297. | DOI | Zbl
[50] Woltjer Lodewijk, A theorem on force-free magnetic fields, Proc. Natl. Acad. Sci. USA 44 (1958), 489–491. | DOI | MR | Zbl
[51] Williams Robert, The structure of Lorenz attractors, Publ. Math. Inst. Hautes Études Sci. 50 (1979), 50–73. | DOI | Zbl
[52] Young Lai-Sang, What Are SRB Measures, and Which Dynamical Systems Have Them?, J. Stat. Phys. 108 (2002), 733–754. | Zbl
Cited by Sources: