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Asymptotic invariants of 3-dimensional vector fields

PIERRE DEHORNOY

Abstract

In this survey article, we present several constructions of invariants for 3-dimensional
volume-preserving vector fields under volume-preserving diffeomorphisms. After intro-
ducing helicity, we focus on invariants constructed using knot theory, following Arnol’d’s
strategy. Most invariants constructed in this way are actually very close to helicity, but
we also present a few that are rather different. We conclude with some open questions.

These notes are dedicated to the following

Problem A. Construct invariants of 3-dimensional volume-preserving vector fields up to
volume-preserving diffeomorphisms.

We did not specify what is the underlying manifold. For physical applications, it is natural
to work on R3 or on a bounded domain of R3, often with the condition that the vector field is
tangent to the boundary. For mathematical reasons, it is easier to work on compact manifolds,
so the 3-sphere S3 = R3 ∪ {∞} is a natural space. Actually most presented results hold both
in R3 and S3, so we will alternate freely between those two manifolds, depending on what is
more natural.

We also did not specify the regularity of the vector field and the regularity of the diffeomor-
phisms. Yet regularity is in general an important question in dynamical systems. For having
a well-defined orbit flow and well-defined orbits, we need the vector field to be Lipschitz-
continuous, but for simplicity we will generally assume C∞. Likewise, many invariants are
invariant under C1 volume-preserving diffeomorphisms, but one can restrict to invariance
under C∞ volume-preserving diffeomorphisms for simplicity. It turns out that it is an open
question for most constructions whether they are invariants under volume-preserving home-
omorphisms.

Also comes the question of the volume. For physical applications, we are mostly interested
in invariant measures given by the Euclidean volume, or a function times the Euclidean vol-
ume. But the richness of the mathematical approach is to deal with more general invariant
measures, like for example the linear measures concentrated on periodic orbits, or the phys-
ical SRB measures (more on this in Section 1.c).

Problem A has roots in magnetohydrodynamics (MHD), a part of physics dedicated to the
dynamics of magnetic fields, in particular in plasmas. Indeed the magnetic flow of an ideal
plasma is time-dependent, but turns out to be transported by the velocity field of the plasma,
so that the magnetic field at a given moment is the image of the magnetic field at another
moment under a volume-preserving diffeomorphism. In order to understand the long-term
behavior (as long as the ideal model is relevant), it is desirable to have invariants that help
understanding how the magnetic flow may or may not evolve [3].
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Firstly, one can note that the number of fixed points and of periodic orbits is such an
invariant. Secondly, periodic orbits form knots whose isotopy classes are a second class
of invariants. However there exist C1-volume-preserving vector fields on S3 without fixed
points nor periodic orbits [30], so that the knot types are not sufficient to classify vector
fields (there also exist analytic vector fields without periodic orbits, but they do not preserve
any volume [29]). Moreover these invariants are of rather local nature: knowing that a vector
field contains a certain knot as periodic orbit does not necessarily says much about what
happens away from this particular periodic orbit.

The quest for (global) invariants has been launched by Woltjer and Moreau with the discov-
ery of helicity [50, 35]. It was first defined (see Section 2) using differential forms, and invari-
ance under diffeomorphism was first unnoticed. This invariance was proven by Moffatt [34]
who also remarked that helicity is actually related to knot theory, and more precisely to the
linking number.

This connection was deepened by Arnol’d [2] who showed that helicity is a sort of average
linking number of pairs of orbits. More precisely a generic orbit of a vector field has in general
no reason for being closed, but it is recurrent (meaning that it comes back close to its initial
point). One then obtains a knot by connecting the two ends of any arc of orbit with a geodesic
segment. Arnol’d proved that for almost every pair of points (p1, p2) the linking number of the
two such arcs of orbits of length t1, t2 is asymptotic to a constant cp1,p2 times t1t2. Moreover
the function (p1, p2) 7→ cp1,p2 is integrable, and its integral equals... the helicity of the vector
field!

As the world of knot and link invariants is large and rich, that it contains many different
tractable objects, it is desirable to use Arnol’d’s strategy in order to export these invariants
to vector fields. Let us describe an ideal scheme which mimics Arnol’d’s theorem:

• take a link invariant , that is, a function that assigns to any link k1 ∪ · · · ∪ k in R3 or
S3 a real number and that is invariant under isotopy,

• for ~X a volume-preserving vector field and p1, . . . , p points in R3 or S3, consider the
segments of orbits ~X of the form ϕ

[0,t1]
~X

(p1), . . . , ϕ
[0,t]
~X

(p) where (ϕt~X)t∈R denotes the
flow of ~X,

• close these segments using geodesic arcs to get knots k ~X(p1, t1), . . . , k ~X(p, t),

• if for almost every p1, . . . , p the invariant (k ~X(p1, t1), . . . , k ~X(p, t)) has an asymp-
totic behavior of the form ∞~X (p1, . . . , p) · t

n1
1 . . . t

n
 and the function (p1, . . . , p) 7→

∞~X (p1, . . . , p) is integrable with respect to the volume-measure, then the integral
∫

(S3)n 
∞
~X
(p1, . . . , p)dvol is an invariant of ~X under volume-preserving diffeomorphism.

If  is a link invariant such that the above scheme works for every volume-preserving
vector field ~X, then  is an asymptotic vector field invariant of order (n1, . . . , n). Its value
on ~X is defined as (n1,...,n)( ~X) := 1

Vol(S3)n
∫

(S3)n 
∞
~X
(p1, . . . , p)dvol.

With this definition, Arnol’d’s theorem [2] states that the linking number is an asymptotic
vector field invariant of order (1,1) whose value on a vector field equals helicity.

Recall that a vector field ~X is ergodic with respect to a probability measure μ if every ~X-
invariant measurable set has μ-measure 0 or 1. In this case every ~X-invariant function is
almost-surely constant. In the previous setting, when ~X is ergodic, the function (p1, . . . , p) 7→
∞~X (p1, . . . , p) is almost surely constant, so that (n,...,n)( ~X) can be computed using a single
tuple of generic orbits.

Problem B (Arnol’d’s question). Construct asymptotic vector field invariants whose value
on ergodic vector fields is not a function of helicity.

Sadly Problem B admits few answers yet. On the one hand there are some invariants
(e.g., crossing number [14]) for which Arnol’d’s strategy is likely to work, but the invariant is
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not very tractable and the correspondence between the actual knot invariant and its vector
field-counterpart is not proven yet.

On the other hand there are many invariants (e.g., ω-signatures, Vassiliev invariants) for
which Arnol’d’s strategy is known to work, but the asympotitcs turn out to be a function of
the helicity when the vector field is ergodic (i.e., ( ~X) is a function of the helicity of ~X). Let
us however underline that this dependance is proven only for ergodic vector fields, so that
these invariants may still say something on how the different ergodic components of a vector
field are linked. Actually the family of invariants that fall in this second category is very large
(Vassiliev invariants are even conjectured to be total invariants). So, if link invariants form a
vast forest for which linking number is the first of many trees (left), asymptotic invariants for
ergodic volume-preserving vector fields seem to form a forest in which there might be only
one tree called helicity (right) !

A satisfactory explanation of this phenomenon has been given recently (actually between
the time the course was given and these notes published!) by E. Kudrayvtseva [27, 28] and
A. Encisco, D. Peralta-Salas, and F. Torres de Lizaur [12]. They show that if one looks for very
regular invariants, then there is only one for ergodic vector fields, namely helicity. We will
present their results.

However, we can still look at less regular invariants. Indeed it turns out that there are
(few) invariants (e.g., Milnor’s invariants, trunk) for which Problem B has a positive answer:
(n1,...,n)( ~X) is not proportional to helicity. We will present some of them in the last section.

There already exist two excellent surveys on Problem A [17, 20] and it seems hard to write
better texts than these two. The goal of these notes is therefore to restrict our attention to
Problem B and to present mostly results that have been proven in the last decade.

The plan is as follows: in Section 1 we present a short history of Problem A and connect it
with hydro- and magnetodynamics; we also present examples of vector fields for which the
study of knotted orbits and knot-theoretical invariants is easier. Such examples are useful for
developing the intuition. In Section 2 we present the simplest vector field invariant—helicity—
and relate it with the simplest link invariant—linking number. In Section 3 we present other
asymptotic invariants (signatures, Vassiliev invariants, quadratic linking numbers) which turn
out to be proportional to helicity on ergodic vector fields. We also presents Encisco-Peralta-
Salas-Torres de Lizaur’s result about uniqueness of helicity. In Section 4 we explain how to
derive vector field invariants that are not governed by helicity, and we finish with some
questions in Section 5.

Acknowledgements. These notes correspond to an extended version of a course given
at the school Winterbraids V in Pau (2015). I thank the organizers (P. Bellingeri, V. Florens,
J.-B. Meilhan, E. Wagner) for inviting me and for the wonderful atmosphere they bring into
these winter schools. I also thank L. Liechti for taking notes during the lectures, F. Misev,
A. Boulanger, and the anonymous referees for numerous remarks that led to substantial
improvements of these notes.
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1. Introduction: motivation and examples

We begin with a history section that reminds Helmholtz’ laws for the motion of a perfect
fluid [23]. These laws were at the origin of Thomson’s theory of atoms [43] and motivated the
foundation of knot theory by Tait [42]. We then give some examples of measure-preserving
vector fields, so that the reader has some examples to test his intuition on.

1.a. Helmholtz’ laws and connection with knot theory

Helmholtz’ laws simultaneously motivate Problem A and connect it with knot theory, as we
explain below.

Euler’s equations (1755) for the velocity field ~t() of an ideal (i.e., inviscid, incompress-
ible) fluid in R3 follow from Newton’s laws of mechanics applied to infinitesimal volumes:

~∇ · ~t = 0,(1.1)
∂~t

∂t
+ (~t · ~∇)~t + ~∇p = ~0.(1.2)

Equation (1.1) transcribes the conservation of mass of the fluid (here ~∇ · ~t denotes the
divergence of ~t), and Equation (1.2) transcribes the conservation of momentum (p stands
for the pressure and (~t · ~∇)~t is the directional derivative of ~t).

Helmholtz noted a remarkable property of these equations as follows. The local move-
ment of the fluid around a particle is given by the differential d~t. It can be decomposed
into a stretching part and a rotational part, given respectively by the symmetric and anti-
symmetric part of d~t. Given ct an infinitesimal ellipse centered on the considered particle,
the circulation of ~t along c given by

∮

c ~t · ~dc measures how ~t rotates on c. This quantity is
bilinear in the two axes of the ellipse: it is hence a 2-form, which we denote by βt. This can
be thought of as a local plane and a local rotation in that plane. Given a volume form μ (for
example the standard Euclidean volume), this rotation can be expressed by a vector whose
direction is the axis of local rotation and whose length is the speed of local rotation. In co-
ordinates one checks that the field ~ωt := ~∇ × ~t = crl ~t satisfies βt(~y, ~z) = μ( ~ωt , ~y, ~z) and
that ~ωt is μ-preserving.

Now the key idea of Helmholtz is to compute the total derivative of the circulation on an
arbitrary curve ct with length element ~dct that is transported by the flow:

D

Dt

∮

ct

~t · ~dct =
∮

ct

�

D~t

Dt
· ~dct + ~t ·

D( ~dct)

Dt

�

=
∮

ct

~∇pt · ~dct + ~t · d~t

=
∮

ct

0 + d‖~t‖2 = 0.

At the global level, this shows that the circulation on a curve is constant over time. At the
infinitesimal level, this shows that the infinitesimal circulation —the form βt— is transported
by the flow: if we denote by ϕt the flow of ~t we have βt = (ϕt)∗(β0). Also for the curl we get
~ωt = (ϕt)∗( ~ω0): for an ideal fluid, the vorticity field is transported by the velocity field; one
says that it is frozen in.

This theorem of Helmholtz has strong implications, in particular, since ϕt is a volume-
preserving diffeomorphism for all t, every property of the vorticity field ~ωt that is preserved
under volume-preserving diffeomorphism yields a time-independent invariant of the velocity
field ~t, hence of the original system. Among these properties, “ ~ωt has a periodic orbit of a
given knot type” is a remarkable one. Isolated periodic orbits are maybe not easy to detect,
but a tubular neighborhood of a knot may also be invariant by the vector field, one then speak
of a knotted invariant tube. “ ~ωt has a knotted invariant tube of a given knot type” is then
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a property that is invariant under time-evolution. This is what led William Thomson (a.k.a.
lord Kelvin) to imagine atoms as invariant vortex tubes in the ether fluid that was suppose
to exist everywhere. The theory lasted several years before Thomson abandoned it himself,
mostly because he could not find correspondances between the first knot tables he had and
the known atoms that would reflect spectral properties of atoms (see the historical survey by
D. Silver [41]). However this hope led Peter G. Tait to found and develop knot theory, whose
existence justifies a posteriori Thomson’s attempt.

1.b. Magnetohydrodynamics

The connection between knot theory and fluid mechanics was freshened up one century after
Helmholtz’s discovery when Woltjer, an astrophysicist, remarked particularly stable patterns
in the magnetic field of the crab nebula [50].

An ideal plasma is a perfectly conducting fluid. Its motion is directed by a velocity field ~t
that describes the motion of particles, an electric field ~Et, and a magnetic field ~Bt that is
volume-preserving. In the ideal model, the plasma is perfectly conducting. The magnetic
field then satisfies ∂ ~Bt

∂t = crl(~∧ ~Bt). Working with a vector potential of ~Bt and using the

incompressibility condition ~∇ · ~t = 0, Woltjer derived the equation ∂ ~Bt
∂t + [ ~t , ~Bt] = 0. This

means exactly that the magnetic field ~Bt is frozen in the velocity field: magnetic lines can be
distorted, but particles on the same magnetic line remain on the same magnetic line.

This ideal model is not accurate in general, but it is a good approximation of real phe-
nomena in certain regimes. It fails for examples when magnetic lines are too “twisted” of
“braided”, in which case the magnetic lines reconnect, thus breaking Helmholtz’ laws. Actu-
ally this reconnection phenomenon and the liberation of energy it induces are proposed as
an explanation of the huge temperature of the solar corona: while the temperature at the
surface of the Sun is about 6000◦K, the temperature in the corona 100km above the surface
is about 1.000.000◦K, see for example [37]. Note that if the invariants we are looking for in
this text change under reconnection, they are likely to behave continuously, and therefore to
be of interest even in this situation.

1.c. Examples

We now describe families of vector fields on subsets of S3 that are relevant and explain some
of their properties. Remember that the flow of a vector field ~X is the one-parameter family of
diffeomorphisms (ϕt~X)t∈R that describes the orbits of ~X, namely d

dtϕ
t
~X
(p) = ~X(ϕt~X(p)). In some

cases it is easier to describe the flow induced by the vector field, rather than the vector field
itself.

• The Hopf flow. Viewing S3 as the unit sphere in C2, the Hopf flow is defined by
ϕt
Hopƒ

(z1, z2) = (etz1, etz2). It preserves the volume given by the Haar measure on S3.
All orbits are periodic of period 1. They form great circles that are pairwise linked once.
The tori given by | z1z2 | = cst are invariant, and the orbits are Villarceau circles on these

tori. On the picture (drawn in R3 using stereographic projection from the point (0,1)
in C2 ' R4), the circle z2 = 0 corresponds to the red closed orbit. The circle z1 = 0 is
a vertical straight line going through the projection point.
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• The Seifert flows generalize the previous example. For α, β two real parameters it is
given by ϕt

α,β
(z1, z2) = (eαtz1, eβtz2). It also preserves the Haar measure on S3. The

tori | z1z2 | = cst are still invariant, but the orbits now have slope β/α on each of them.
When α, β are integers (or actually when their ratio is rational), the orbits are periodic
of period lcm(α, β). They form (α, β)-torus knots, except the two orbits corresponding
to z1 = 0 and z2 = 0 that are always trivial knots. The picture corresponds to the case
(α, β) = (3,2), in which orbits form trefoil knots. These examples are interestesting
since torus knots are usually more easy to understand than general knots, and their
invariants are more easily computed. Therefore when one wishes to understand the
asymptotic behaviour of an invariant, it may help to first understand its behavior on
periodic orbits of Seifert flows, that is, on torus knots.

• Suspensions of automorphisms of the disc: for ƒ an area-preserving diffeomorphism of
the disc, one considers the suspension D2 × [0,1]/(p,1)∼(ƒ (p),0) equipped with the ver-
tical vector field. This is a topological torus and the vector field preserves the product
volume. One can embed this torus into S3. The vector field thus obtained is not contin-
uous at the boundary of the thorus, but one can easily extend it to a neighborhood of
the embedded torus with a bump function and obtain a continuous, volume-preserving
vector field.

If the torus is embedded in a knotted way, one obtains another vector field which is
not the image of the previous one by an isotopy of the space. We call it a knotted
suspension.

• The Lorenz flow [32] is the flow on R3 that describes the solutions of the system
̇ = −10+ 10y, ẏ = 24− y− z, ż = −8/3z+ y. Its main feature is that it admits
a strange attractor, that is, a branched surface on which orbits accumulate, keeping
spiraling with a chaotic behavior (left).

Understanding precisely the form and the dynamics of this attractor is difficult if one
starts from the given equations. This is why a combinatorial model of the flow was in-
troduced by Guckenheimer and Williams [51] (center). The geometric Lorenz attractor
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is a branched surface supporting a semi-flow. It is obtained from two ribbons by gluing
their extremities as shown on the picture. Identifying the gluing segment with [0,1],
the first return-map can be chosen of the form  7→  + b mod 1, with two param-
eters 0 ¶  < 1 < b ¶ 2 (right). It is easily seen that such a map admits a dense set
of periodic points. Lorenz geometric attractors hence contain infinitely many periodic
orbits. These form non-trivial knots. Changing the parameters , b changes the set
of periodic orbits, yet the choice  = 0, b = 2 contains all the knots that appear for
other parameters. These knots are called Lorenz knots. They are more complicated
than torus knots, but still simpler than arbitrary knots (for example they are closures
of positive braids, hence fibered knots), see [7, 21, 10] for more on them. Hence they
are good candidates for studying asymptotic behavior of knot invariants on orbits of
vector fields, more complex than torus knots, but still rather well understood.

It has been proved [47] that the dynamics of the actual Lorenz equation is indeed
(semi-)conjugated to the dynamics of some geometric attractor, so that the geomet-
ric model reflects the behavior of the solutions of the Lorenz equations. The Lorenz
flows (the original one or the geometric models) are dissipative and do not preserve
any volume, so they are not directly eligible for our problem. However they admit
invariant measures, like the Dirac linear measures whose mass is concentrated on a
finite number of periodic orbits, or physical SRB-measures. The latters are obtained
starting from the volume measure μB on an arbitrary ball B in R3, considering the
image measure (ϕt)∗(μB) obtained by pushing along the flow, and taking an accu-
mulation point in the weak sense. Such a point is an invariant measure, called an
SRB-measure. It can be thought of as “the invariant measures most compatible with
volume when volume is not preserved” [52].

Actually any differential system whose orbits do not all escape to infinity admits non-
trivial invariant measures, so that the Lorenz flow is not an isolated example. Other
similar examples include the Rössler flow [39] (left) or the Ghrist flow [18] (right).

The latter is very interesting since it contains all knot types as periodic orbits. However
when and how a given knot appears as periodic orbit of the Ghrist’s attractor is still
very badly understood, so that it is difficult to use this vector field for guiding the
intuition. See the beautiful book [19] for more examples.

What makes the Lorenz flow particularly interesting is the structure and abundance of
its periodic orbits, plus the fact that their knot type is rather well understood.

In view of the previous list, one may ask: which flows are not eligible for our study? Al-
most none, since every flow on a compact manifold admits an invariant measure (see for
example [9, p. 37]). But we underlined the previous examples because the knot types of the
periodic orbits are rather understood, and can serve as guiding lines.
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2. Helicity and asymptotic linking number

For simplicity, we work in S3, although helicity can be defined for vector fields in arbitrary
homology spheres, as well as on submanifolds of S3 with boundary, provided the vector field
is tangent to the boundary.

2.a. Woltjer-Moreau-Moffatt’s helicity

Given a volume form μ on S3 (for example the standard one), a vector field ~ induces a
2-form β~ = ~μ according to the formula β~(~y, ~z) = μ(~, ~y, ~z). Saying that ~ is μ-preserving
amounts to the equation L~μ = 0, where L~ is the Lie derivative along ~. By Cartan’s formula
L~ = ~d + d~, we get L~μ = ~dμ + d~μ = dβ~. So the form β~ is closed. Since H2(S3) is
trivial, β~ is exact, so there exists a 1-form α~ such that β~ = dα~. The 1-form α~ is called a
form-potential of ~. It is not unique, and the other form-potentials are obtained by adding a
closed form.

Lemma 2.1. The integral
∫

S3
α~ ∧ dα~ is independent of the choice of the form-potential.

Proof. For any closed-form θ, we have (α+ θ)∧d(α+ θ) = α∧dα+ θ∧dα = α∧dα+ d(θ∧α),
so that
∫

S3
(α+ θ)∧d(α+ θ)−α∧dα =

∫

S3
d(θ∧α) =
∫

∂S3 θ∧α, by Stokes’ formula. The latter
integral is zero since S3 has no boundary. �

Definition 2.2. The helicity Hel(~, μ) of ~ is the integral
∫

S3
α~∧dα~ for α~ a form-potential

of ~. By the previous result, it does not depend on the choice of the potential.

Note that helicity heavily depends on the choice of the invariant volume μ: different in-
variant volumes induce different helicities. Helicity can also be defined on domains with
boundary, provided the vector field is tangent to the boundary.

Lemma 2.3. The helicity of a μ-preserving vector field ~ is invariant under the action of
μ-preserving diffeomorphisms.

Proof. If ƒ is a μ-preserving diffeomorphism, then we have βƒ∗(~) = ƒ∗(β~) and the 1-form
ƒ∗(α~) satisfies dƒ∗(α~) = ƒ∗(dα~) = βƒ∗(~), so that ∗(α~) is a form-potential of ƒ∗(~), and
∫

S3
αƒ∗(~) ∧ dαƒ∗(~) =

∫

S3
α~ ∧ dα~. �

Although being very concise the previous definition may look mysterious. Here is another
interpretation of helicity that is important for us. It relies on the introduction of an auxil-
iary metric g (for example the standard metric on S3). The volume-preservation of ~ now
reads div ~ = 0, that is, ~∇ · ~ = 0, and this equation implies the existence of a vector field ~ω
such that crl ~ω := ~∇ × ~ω = ~. Such a ~ω is called a vector-potential of ~.

In this case the wedge product α~ ∧ dα~ is equal to ~ω · ~, so one gets

(2.1) Hel(~,vol) =
∫

S3
~ω · ~dvol =
∫

S3
crl−1(~) · ~dvol.

An important example of vector potential (on R3) is given by the Biot-Savard Formula:
the vector field ~ defined by ~() := 1

4π

∫

R3\{}
~(y)×(−y)
‖−y‖3 dy satisfies crl ~ = ~. Using this

potential, we then obtain a formula for the helicity of a vector field on R3:

Hel(~,vol) =
1

4π

∫∫

R3×R3\Dig

~() · (~(y) × ( − y))

‖ − y‖3
ddy,

where Dig denotes the set {(, ) | ∈ R3}. Since ~ · (~y × ~z) = det(~, ~y, ~z), we get

(2.2) Hel(~,vol) =
1

4π

∫∫

R3×R3\Dig

det(~(), ~(y),  − y)

‖ − y‖3
ddy
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2.b. Linking number

Linking number is certainly the simplest invariant of 2-component links. For k1, k2 two disjoint
knots in R3, their linking number Lk(k1, k2) admits several equivalent definitions [38]:

• the number of signed crossings of the curves π(k1), π(k2) for π a generic projection of
R3 on a plane;

• the algebraic intersection number 〈k1, S2〉, where S2 is any oriented surface whose
oriented boundary coincides with k2 (also called a Seifert surface for k2);

• the degree of the Gauss map G : S1 × S1 → S2, (t1, t2) 7→
γ1(t1)−γ2(t2)
‖γ1(t1)−γ2(t2)‖ , where γ1, γ2

are arbitrary parametrizations of the knots k1, k2;

• the Gauss Integral

(2.3)
1

4π

∫∫

S1×S1

det(γ̇1(t1), γ̇2(t2), γ2(t2) − γ1(t1))

‖γ2(t2) − γ1(t1)‖3
dt1 dt2.

The equivalence of the first, third and fourth definitions is not hard to check. Indeed the
first one corresponds to counting the signed number of preimages of the north pole under the
Gauss map. The fourth one amounts to compute the degree by integrating the pullback of the
area form on S2. The equivalence with the second definition is harder to check. One option
is to first check that two different surfaces induce the same intersection number, and then
to prove that this number corresponds to the number of signed crossings using a particular
surface (for example the one given by the Seifert Algorithm [40]).

The connection of the Gauss Integral with magnetic fields goes back to Ampère. Indeed
Biot-Savard Equation states that the magnetic field at  induced by a charged particle q

moving with velocity ~(y) is given (up to a multiplicative constant) by
q

2π

~(y)∧ ( − y)

‖ − y‖3
.

Therefore the magnetic field generated at a point  by a closed loop γ2 crossed by a constant

current of intensity  is given by
∮

γ2



2π

~dy∧ ( − y)

‖ − y‖3
. So the circulation of the magnetic field

along a closed loop γ1 is given by
∮

γ1

∮

γ2



2π

~dy∧ ( − y)

‖ − y‖3
· ~d =
∮

γ1

∮

γ2



2π

det( ~d, ~dy,  − y)

‖ − y‖3
= 2 · Lk(γ1, γ2),

the last equality relying on Gauss Integral. This last equation generalizes Ampère’s law (which
corresponds to the case where γ1 is a trivial knot).

Note that the previous definition can work for knots in S3: one first perturbs them so
that they do not pass through the point ∞, and then considers the linking number of their
stereographic projections in R3. One checks that an isotopy, even passing through ∞, leave
the linking number invariant.

2.c. Connection between helicity and linking number

In his seminal paper [34] Moffatt showed that for a field ~ localized on two infinitesimal tubes
which are tubular neighbourhoods of two knots k1, k2 parametrized by γ1, γ2 : S1 → R3,
Formula (2.2) for helicity takes the form

Hel(~) =
1

4π

∫∫

S1×S1

det(~(γ1(t1)), ~(γ2(t2)), γ2(t2) − γ1(t1))

‖γ2(t2) − γ1(t1)‖3
dt1 dt2.

Now since the knots k1, k2 are invariant, the vector field ~ at a given point γ(t) is pro-
portional to the tangent vector γ̇(t). Up to changing the parametrization, the proportionality
factor is constant equal to the intensity  of the current in the corresponding knot. Comparing
with Formula (2.3), Moffatt deduces Hel(~) = Lk(k1, k2)12.
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Noting that helicity is a quadratic form, Moffatt then remarks that if a field is localized on
closed curves, helicity will be the sum of all pairwise linking numbers of orbits (multiplied by
the corresponding intensities). This suggests that helicity is an average linking number.

In order to make Moffatt’s idea more precise and to deal with the fact that orbits of flows
are more likely to be open lines than closed curves, Arnol’d introduced [2] a method to turn
open segments of orbits into loops. The original definition was not precise enough to make
the desired result true, but Vogel [49] provided a correct refinement (which takes a simple
form on a compact manifold with a metric, like S3).

Definition 2.4 (Arnol’d-Vogel). Given a vector field ~X on S3, for p a point and t a positive
time, the loop k ~X(p, t) is defined as the concatenation of the segment of orbit of X starting
at p and of length t with a geodesic arc connecting ϕt(p) to p. Such a loop is called an almost
periodic orbit of ~X.

If the short path connecting ϕt(p) to p intersects the segment of orbit or if the orbit starting
at p is periodic of period less than t, then the loop k ~X(p, t) is not embedded, but otherwise it
is, and therefore defines a knot.

Theorem 2.5 (Arnol’d-Vogel). Assume that ~X is a vector field on S3 that preserves a mea-
sure μ not charging any periodic orbit. Then for μ-almost every pair of points p1, p2, the
limit

Lk∞~X (p1, p2) := lim
t1,t2→∞

1

t1t2
Lk(k ~X(p1, t1), k ~X(p2, t2))

exists. Moreover, if ~X is μ-ergodic, then for almost every p1, p2 the limit equals 1
μ(S3)2

Hel( ~X, μ).

In other words, Lk is a (1,1)-asymptotic invariant which is proportional to the helicity on
ergodic vector fields.

The proof is an application of the Birkhoff Ergodic Theorem. The flow (ϕt)t∈R of the vec-
tor field ~X induces a parametrization of its orbits, so that the tangent vector to an orbit
at a given point coincides with the vector field ~X at that point. Then Gauss Integral for
1

t1t2
Lk(k ~X(p1, t1), kX(p2, t2)) can be written as the sum of the integral

1

t1t2

∫

[0,t1]

∫

[0,t2]

det( ~X(ϕs1 (p1)), ~X(ϕs2 (p2)), ϕs2 (p2) − ϕs1 (p1))

‖ϕs2 (p2) − ϕs1 (p1)‖3
ds1 ds2

and three other terms that depend on the geodesic arcs used to close the segments of orbits.
Since S3 is compact, these additional terms are of the order of |t1|+ |t2|, and in particular are
negligible compared to t1t2.

The above integral is a time-average. In order to apply the ergodic theorem, one needs to

check that the function (, y) 7→ det( ~X(), ~X(y),y−)
‖y−‖3 is integrable on S3 × S3 \ Dig. It is indeed

the case (this is a non-trivial fact). Birkhoff’s ergodic Theorem then implies that when t1, t2
tend to infinity, for almost every p1, p2 the time-average converges to an integrable function,
and the space-average of this function equals

∫

S3

∫

S3

det( ~X(), ~X(y), y − )

‖y − ‖3
ddy.

Example 2.6. Let us estimate the helicity of the flows given in Section 1.c.
For the Hopf flow, every orbit is periodic of period 1 and two orbits have linking +1. There-

fore the function Lk∞~XHopf is constant equal to 1, so that Hel( ~XHopf) = μ(S3) = 1.

For the Seifert flow if α, β are two coprime integers, then the orbits of ~Xα,β are periodic of
period 1, and their linking number is also equal to αβ. Therefore the function Lk∞~Xαβ is also

constant equal to αβ, so that Hel( ~Xα,β) = αβ. By continuity, the same holds for arbitrary α, β.
For the suspension of a diffeomorphism of the disc embedded in a trivial way in S3, the

interpretation of helicity as average linking number implies that the helicity of a suspension

II–10



Course no II— Asymptotic invariants of 3-dimensional vector fields

equals the average rotation of the corresponding diffeomorphism of the disc. It was proven
by Fathi [13] that such an average rotation is given by the so-called Calabi invariant [8].

For the Lorenz flow, it is not easy to get an exact value for helicity for arbitrary invariant
measures. However every pair of orbits has negative linking number, so that for all invariant
measures, the helicity is negative.

3. Asymptotic invariants proportional to helicity

We now give examples of knot invariants (ω-signatures, Vassiliev invariants) for which
Arnol’d’s scheme works, meaning that an asymptotic on long pieces of orbits of vector fields
exists. These invariants are among the most common knot invariants and form a very rich
family. For example the classical signature is among the simplest invariants that distinguish
the left-handed trefoil, the right-handed trefoil and the figure-eight knot. Also Vassiliev invari-
ants are conjecturally total invariants: any two knots are presumably distinguished by some
Vassiliev invariant.

However we will see that this richness is not fully preserved when taking the asymptotics.
Indeed all constructed vector field invariants turn out to be proportional for ergodic vector
fields (remember that a vector field ~X is ergodic with respect to a probability measure μ
if every ~X-invariant set has measure 0 or 1). So these invariants do not give solutions to
Problem B.

Still, let us underline that in Theorem 3.1, 3.2, 3.4, and 3.5, proportionality is known only
when the measure is a volume-measure and the vector field is ergodic for this measure. For
example if the considered invariant measure is supported on only one periodic orbit, then the
asymptotic invariants we consider exist and are equal to their standard counterpart for the
knot formed by the periodic orbit. It is an interesting question to understand what happens
on SRB-measures (as for example those for the Lorenz flow): does proportionality to helicity
also hold in this case?

3.a. Signatures, linear saddle invariants, and Gambaudo-Ghys’ approach

The signature σ is a classical knot invariant introduced by Trotter [46]. It was later generalized
by Tristram and Levine [45, 31] into a one-parameter family σω for ω ∈ S1. These are among
the simplest invariants to compute. Their definition relies on the introduction of a Seifert
surface for the knot, but the invariants do not depend on the choice of this surface. Namely
for S an orientable surface whose boundary coincides with a knot K, one can consider the
Seifert bilinear form s on H1(S,R) defined by s([], [y]) = Lk(, y+), where , y are arbitrary
curves representing the respective homology classes and y+ denotes the curve y pushed
a bit off the surface in the positive normal direction. This linking number does not depend
on the choice of the representative , y, and one checks that the form s is bilinear. The ω-
signature σω(K) is then defined as the signature of the hermitian form (1 − ω)s + (1 − ω̄)ts.
The classical signature corresponds to the case ω = −1.

The ω-signature of a knot behaves rather nicely when one varies ω in the sense that it
is a piecewise constant function that jumps only at the roots of the Alexander polynomial
of the knot, and by a term at most twice the multiplicity. However the precise shape may
be complicated and surprising. The result generalizing Arnol’d Theorem to signatures is due
Gambaudo and Ghys (see the introduction for the notation σ(2)).

Theorem 3.1. [16] Let ~X be a C∞ volume-preserving vector field on S3. () For every ω =
e2πθ, the ω-signature is an asymptotic vector field invariant of order (2). (b) If ~X is ergodic,
we have σ(2)

ω
( ~X) = 2θ(1 − θ) ·Hel( ~X).

This theorem has then been generalized to other knot invariants [4, 5] with little variation
in the scheme of the proof. In order to explain this common scheme, we follow Baader and
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introduce the common feature of the considered invariants. A saddle point move is the local
operation on links depicted below:

A real-valued link invariant τ is a linear saddle invariant if it is additive under disjoint union
of links: τ(ℓ1∪ℓ2) = τ(ℓ1)+τ(ℓ2), and if for two oriented links ℓ1, ℓ2 that are related by a saddle
point move one has |τ(ℓ1)− τ(ℓ2)| ¶ C, where C > 0 is a constant not depending on ℓ1, ℓ2. The
ω-signatures are examples of linear saddle invariants, but there are others, as for example
Rasmussen s-invariant or certain concordance invariants.

Theorem 3.2 ([5]). Let ~X be a C∞ volume-preserving vector field on S3. () Every linear
saddle invariant τ is an asymptotic vector field invariant of order (2). (b) If ~X is ergodic we
have τ(2)( ~X) = Cτ ·Hel( ~X), where Cτ is an explicit constant independent of ~X.

The proof goes along two main steps. The first one is due to Gambaudo-Ghys and yields
some normal projections for vector fields. The second in this context is due to Baader and
consists in showing that linear saddle invariants behave well with respect to these normal
projections. Let ~X be a vector field on S3 and τ a linear saddle invariant.

Firstly recall that a flow box for ~X is a submanifold of the form D × [0,1] for D a disc such
that the vector field ~X is tangent to the direction given by the second coordinate. The general
result proved by Gambaudo and Ghys [16] allows to decompose a large portion (say 1 − ϵ1)
of S3 into finitely many flow boxes (B ~X


)=1,...,n that project well on a given plane in the sense

that two boxes either do not overlap at all or they overlap transversally. Such projections are
called normal projections. The combinatorics of the overlappings are recorded by a matrix
(e,j)1¶,j¶n with e,j = 0 when the corresponding boxes do not overlap and e,j = ±1 when they
do, the sign depending on whether the boxes overlap positively or negatively.

Secondly observe that, for k ~X(p, t) an almost periodic orbit, the value τ(k ~X(p, t)) depends
mostly on its intersection with the boxes B1, . . . , Bn. Indeed suppose that k ~X(p, t) crosses m

times B. Using at most n(m1+ · · ·+mn) linear saddle point moves, one can transform k ~X(p, t)
into the disjoint union of several torus links of type T(m, e,jmj), one for every pair of overlap-
ping flow boxes (B, Bj), plus some remaining links depending on the portion of ~X that does
not visit B1, . . . , Bn.

Since a piece of orbit that visits a flow box stays in the box for a time that is bounded from
above and from below, the number m1 + · · · + mn is linear in the length of k ~X(p, t), and so
the number of saddle point moves involved is also linear. Since we will prove that τ(k ~X(p, t))
is quadratic in t, this linear number of saddle moves does not really count: up to another
factor ϵ2, the value τ(k ~X(p, t)) is roughly equal to

∑

,j e,jτ(T(m,mj)).
It remains to evaluate this last expression. Using the same properties of τ, for (p, q)-torus

knots, the function (p, q) 7→ τ(T(p, q)) is almost-additive. Standard arguments imply that is
equal to Cτ · pq, up to a factor ε3, for some constant Cτ that only depends on τ.

Putting all of this together, we get that τ(k ~X(p, t)) is equal to Cτ
∑

,j e,jmmj (up to a
factor ϵ1 + ϵ2 + ϵ3). Now the ergodic theorem implies that for almost every starting point p
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the number m of visits of k ~X(p, t) in B is asymptotic to q(p) · t, where q(p) is an average
frequency that depends of p, so that 1

t2
τ(k ~X(p, t)) is approximately Cτ

∑

,j e,jq(p)qj(p). This
proves part () of the theorem.

For part (b), if ~X is ergodic, then the function q is almost surely constant. Since
∑

,j e,jqqj
actually computes the asymptotic linking number, we get τ(2)( ~X) = Cτ ·Hel( ~X).

3.b. Vassiliev invariants and configuration integrals

Vassiliev invariants are powerful invariants that conjecturally distinguish all knots (namely
if k1, k2 are not isotopic, it is conjectured that there exists a Vassiliev invariant  such that
(k1) 6= (k2)). A way to present them relies on chord diagrams [22].

A chord diagram is a finite set of chords in a disc, each equipped with a sign and an
orientation. A Gauss diagram for a knot k is of the same type: one starts from a planar
projection π(k) with d double points. For every double point of π(k) we add to k a vertical
arc that connects the two points of k that project to the double point. We orient this arc
from top to bottom and we label it with a sign according to whether the crossing is positive
or negative. This transforms k into a knotted graph, but we only keep its abstract structure
and forget about the embedding, thus having a circle with d oriented and signed chords: the
Gauss diagram of the projection. Of course, different projections yield different diagrams.

If D is a chord diagram and π(k) a knot diagram of a knot k, the pairing 〈D,π(k)〉 is the
signed number of appearances of D as a sub diagram of the Gauss diagram associated
to π(k). In general 〈D,π(k)〉 depends on the diagram, so that 〈D, ·〉 is not a knot invariant.
However by combining several diagrams one can obtain the invariance.

Theorem 3.3. [22] For every Vassiliev invariant  there exist chord diagrams D1, . . . , Dn

and reals c1, . . . , cn such that for every knot k and every diagram π(k) of k one has (k) =
∑

cm〈Dm, π(k)〉.

This approach allows Baader and Marché to prove that Vassiliev invariants also have an
asymptotic behavior.

Theorem 3.4. [6] Let ~X be a C∞ volume-preserving vector field on S3. () Every Vassiliev
knot invariant of order n is an asymptotic vector field invariant of order (2n). (b) If ~X is
ergodic we have (2n)( ~X) = C ·Hel( ~X)n, where C is an explicit constant independent of ~X.

The original proof is once again a variation on Arnol’d-Gambaudo-Ghys’ approach. It
amounts to showing that for every diagram D and for a normal projection of ~X given by
Gambaudo and Ghys [16], there is an asymptotic for 〈D, π(k ~X(p, t))〉. For this, given a chord
diagram D, one divides the knot k ~X(p, t) into N >> n equal parts s1, . . . , sN. An apparition of
the chord diagram D in k ~X(p, t) corresponds to n crossing points, hence 2n times t1, . . . , t2n.
Up to a small error, one can assume that these 2n points appear in 2n different segments
of s1, . . . , sN, so that the corresponding times t are roughly independent. Once again,
the probability of seeing a crossing is

∑

,j e,jq(p)qj(p) for the same constants q(p) as in
the proof of Theorem 3.1. Therefore every term 〈D, π(k ~X(p, t))〉 is approximately
(
∑

,j e,jq(p)qj(p))
n. By applying Birkhoff’s ergodic theorem, this term is asymptotic to

t2n for almost every p, and the space average for ergodic vector fields is then (2n)( ~X) =
(
∑

cm)(
∑

,j e,jppj)
n.

The proofs that we sketched of Theorems 3.1, 3.2, and 3.4 may look rather technical and
combinatorial compared to Arnol’d’s proof of the asymptotic character of linking number. It is
then natural to wonder whether there are more direct or more intuitive proofs of these results.
This is indeed the case for Theorem 3.4 which has been given a proof relying on configura-
tion space integrals by Komendarczyk and Volić [26]. This new proof does not rely on the
decomposition into flow boxes that looked superfluous. However there are still many techni-
cal difficulties. The main point is that there exist integral formulas for Vassiliev invariants that
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generalize Gauss Integral, so that one can directly prove that every term 〈Dm, π(k ~X(p, t))〉 is
asymptotic to a term of order 2n, without using Gambaud-Ghys’ normal projections.

This new proof has one advantage and one disadvantage. On the negative side, it is less
explicit for the value of the proportionality factor C. On the positive side, it shows that if
(2n)( ~X) = 0, then there exists a lower-order asymptotic invariant, namely  is an order 2n−2-
asymptotic invariant. Also there is an induction: if (2n)( ~X) = (2n−2)( ~X) = · · · = (2k+2)( ~X) =
0, then  is an asymptotic vector field invariant of order 2k. These lower order terms have
no interpretation yet.

3.c. Akhmetev’s quadratic helicities

In an attempt to define variations on the theme of helicity, one can use the intermediate step
given by Arnol’d [2]. Indeed Theorem 2.5 shows that for ~X a volume-preserving vector field,
for almost-every pair of points (p1, p2), the limit

Lk∞~X (p1, p2) := lim
t1,t2→∞

1

t1t2
Lk(k ~X(p1, t1), k ~X(p2, t2))

exists. Helicity is defined as the integral of this function, and in case ~X is ergodic, Lk∞~X is
almost-surely constant.

Now if ~X is not ergodic, one can play with Lk∞~X and wonder when we obtain other invariants.
This was done by Akhmetev in at least two cases.

Theorem 3.5. [1] For ~X a volume-preserving vector field, the functions (p1, p2) 7→
Lk∞~X (p1, p2)

2 and (p1, p2, p3) 7→ Lk∞~X (p1, p2)Lk
∞
~X
(p1, p3) are integrable and their integrals are

invariant under volume-preserving diffeomorphism.

The corresponding invariants are called quadratic helicities and denoted by Hel(2) and
Hel[2] respectively. They are asymptotic invariants of order (2,2) and (2,1,1) respectively.
Let us underline once again that if ~X is ergodic, then the function (p1, p2) 7→ Lk∞~X (p1, p2) is al-
most constant, so these quadratic helicities are just the square of the standard helicity. Their
interest is then for non-ergodic flows. Of course it is easy to play with other combinations of
higher degree, but it is then not obvious to decide when the obtained quantity is integrable
and whether it is invariant under diffeomorphism.

3.d. Helicity is the only C1-invariant

Looking at Theorems 3.1, 3.2, 3.4 and 3.5 one may wonder whether there exists any asymp-
totic invariant not proportional to helicity on ergodic vector fields. As we will see in the next
section, these indeed exist. However we mention here a series of recent results that partly
explains why it is not so easy to construct invariants different from helicity.

As shown by Lemma 2.1, the helicity of a field ~X may be defined by integrated the 3-
form α ~X∧dα ~X on the whole manifold. If ~X varies continuously, so do α ~X and dα ~X, implying that
the helicity varies continuously. The invariants we are looking for are functional on the space
of volume-preserving vector fields. The natural notion of differentiability for such functionals
is the Fréchet derivative. We then denote by X the set of C1-volume preserving vector field
on S3, with the natural C1-topology. According with [27, 28, 12], a function  : X → R is a
regular integral invariant if it is invariant under volume-preserving diffeomorphisms and if
the Fréchet derivative is obtained by integrating a continuous kernel K, namely D ~X (~Y) =
∫

S3
K( ~X) · ~Y. Kudryavtseva on the one hand, and Encisco, Peralta-Salas and Torres de Lizaur

on the other hand proved two local and global versions of the rough following statement

Theorem 3.6. [28, 12] Every regular integral invariant is a C1-function of helicity.

This result is remarkable and gives a satisfactory explanation why helicity appears that
often. Let us however underline that it does not prevent the existence of invariant that are
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not functions of helicity. But it implies that such invariant cannot be too smooth. This is the
case of the invariants we present in the next section.

4. Asymptotic invariants different from helicity

In this section we construct invariants that differ from helicity on ergodic vector fields. These
constructions seem much more particular than those of the previous section in the sense
that we construct a few invariants, case by case, rather than obtaining infinite families as
one could hope.

4.a. Higher helicities

The first way to generalize helicity was already suggested by Arnol’d and Khesin [3]. A
first step generalization of linking number is Milnor’s μ̄-invariant for 3-component links. For
k1 ∪ k2 ∪ k3 a link, μ̄(k1 ∪ k2 ∪ k3) is an element of Z/ gcd(Lk(k1, k2), Lk(k2, k3), Lk(k3, k1))Z.
In case all pairwise linking numbers are zero, we then obtain a well-defined integer. The sim-
ilarity with linking number goes a bit further since there exist integral formulas for μ̄, called
Massey products [33]. We do not write them here since they are rather complicated, but their
existence is important.

The corresponding scenario for vector fields would then require linking of arbitrary orbits
to be zero. A particular case of this situation was studied by Komendarczyk:

Theorem 4.1 ([24, 25]). Let B1, B2, B3 be three handlebodies in S3 or R3 supporting
measure-preserving vector fields ~X1, ~X2, ~X3, such that the pairwise linking numbers of arbi-
trary pairs of orbits of ~X, ~Xj with  6= j is zero. Then the integral over B1×B2×B3 of the Massey
product evaluated on ( ~X1, ~X2, ~X3) converges and is invariant under volume-preserving diffeo-
morphism.

4.b. Asymptotic crossing number

Crossing number is one of the oldest knot invariants, but it is hard to compute in general. For
k a knot in R3 and π(k) a diagram of k (that is, a projection on a plane), cr(π(k)) is defined
as the number of double points of π(k). The crossing number Cr(k) is then the minimum
of cr(π(k)) over all diagrams of k. In other words cr(π(k)) is the number of preimages of the
north pole under the Gauss map G : S1 × S1 \Dig→ S2, (t1, t2) 7→

γ(t1)−γ(t2)
‖γ(t1)−γ(t2)‖ , where γ is an

arbitrary parametrization of k that projects onto π(k).
The difference with linking number is that S1 × S1 \ Dig is not a closed surface, so that

G does not have a well-defined degree. Cr(k) is then defined as the minimal number of
preimages of the north pole under G over all projections of k.

A variant can be obtained by counting the average number of preimages of points (not
only of the north pole). This number can be computed by integrating the pull-back of the
area form on S2 by G, yielding

crv(π(k)) :=
1

4π

∫∫

S1×S1\Dig

|det(γ̇(t1), γ̇(t2), γ(t2) − γ(t1))|

‖γ(t2) − γ(t1)‖3
dt1 dt2.

This number is not necessarily an integer. One then defines Crv(k) as the infimum of
crv(π(k)) over all projections of k.

Now this definition can be copied for arbitrary volume-preserving vector fields

cr∞v(
~X) :=

1

4π

∫∫

S3×S3\Dig

|det( ~X(p1), ~X(p2), p2 − p1)|

‖p2 − p1‖3
dp1 dp2.
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However it is not invariant under volume-preserving diffeomorphism and one has to minimize
once again in order to get an invariant

Cr∞v(
~X) := min

ϕ vol. pres.
cr∞v(ϕ

∗ ~X).

Taking the infimum over all volume-preserving diffeomorphisms may look like cheating in
view of obtaining an invariant. However this invariant has some good properties. For p ¾ 1,
the Lp-energy of a vector field on a compact domain of R3 is the integral of its Lp-norm:

Ep( ~X) :=
∫

‖ ~X‖pdvol. It is not invariant under volume-preserving diffeomorphism. In partic-

ular, in physical applications where the considered vector field is transported by volume-
preserving diffeomorphisms, the energy is likely to decrease, but one wonders whether it
can tend to 0. A property of helicity that we did not mention is that it yields a lower bound
on the L2-energy. Therefore a non-zero helicity implies that the energy cannot tend to 0
(see [3]). Asymptotic crossing number yields similar and better bounds:

Theorem 4.2 ([14]). For ~X a volume-preserving vector field, its 3/2-energy is bounded by

E3/2( ~X) ¾
�16

π

�1/4
Cr∞v(

~X)3/4.

4.c. Asymptotic trunk

Thin position for knots is a concept introduced by Gabai for solving the R-conjecture [15],
which states that if the 0-surgery manifold of a knot k in S3 is homeomorphic to S1 × S2,
then k is the unknot. Roughly, thin position corresponds to an embedding of a knot that
is as vertical as possible. It yields several knot invariants—waist, width, trunk— that were
formally defined and studied first by Ozawa [36]. Trunk translates well to vector fields and its
asymptotic character is not hard to prove. It is very close in spirit with braid index or bridge
number (whose asymptotic character is still unknown).

A height function on S3 is a Morse function with only two critical points (one maximum
and one minimum). A curve k is in Morse position with respect to a Morse function h if h|k
is also a Morse function. In this case h−1(t) ∩ k consists of finitely many points for every t,
and the trunk of k with respect to h is defined as the maximum of this number over all levels
of h: tr(k, h) := mxt ♯{h−1(t) ∩ k}. Of course this maximum is not invariant under isotopy,
but allowing h to change over height functions does, and one obtains the definition of the
(knot-)trunk of k:

Tr(k) := min
h height

mx
t

♯{h−1(t) ∩ k}.

Theorem 4.3 ([11]). Trunk is an asymptotic invariant of order (1), and there is no function ƒ :
R→ R such that for every ergodic μ-preserving vector field ~X, the value Tr(1)( ~X, μ) is given by
ƒ (Hel( ~X, μ)).

The point for proving this theorem is that one can actually define directly an analog of
the trunk for vector fields, and check that is coincide with the asymptotic invariant. Namely
in the definition of the knot-trunk we replace the number of intersection points of the knot
with a surface by the absolute value of the flux of the vector field through the surface, thus
defining ~tr( ~X, μ, h) :=mxt

∫

h−1(t) | ~Xμ|, and

~Tr( ~X, μ) := inf
h height

mx
t

∫

h−1(t)
| ~Xμ|.

The key property for proving Theorem 4.3 is to check that ~Tr( ~X, μ) is continuous with re-
spect to both ~X and μ (but its not regular integral, for otherwise it would contradict The-
orem 3.6). This implies that if a long piece of orbit approximates μ, the knot-trunk of this
orbit approximates the trunk of the vector field. It is enough to compute trunk and helicity of
several examples to check independence. Actually, one checks that the trunk of the Seifert
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flow ~Xα,β with respect to the standard volume on S3 is min(α, β). Recall from Example 2.6
that the helicity of ~Xα,β is αβ. The Seifert flow is not ergodic, but it can be approximated by
ergodic flows. Since there is no function ƒ such that min(α, β) = ƒ (αβ), the statement follows.

5. Questions

We finish with some speculations on how to construct new vector field invariants.

5.a. Higher helicities

This direction seems to be the most promising one. On one hand, Theorem 4.1 ensures that
Milnor’s invariant for 3-component links has a vector field analog in the restricted case where
it is computed on a union of three domains that ensure that pairwise linking numbers are all
zero. A less restricted case would correspond to a vector field defined on one single domain.

Question 5.1. Can one generalize Komendarczyk Theorem 4.1 to any vector field ~X such
that Lk∞~X (p1, p2) = 0 for almost every p1, p2? In particular if ~X is ergodic and Hel( ~X) = 0?

Another direction is given by Komendarczyk-Volić’s proof that Vassiliev invariants are as-
ymptotic invariants. In particular they show that when helicity vanishes, then an order n
Vassiliev invariant yields an order 2n − 2 asymptotic invariant.

Question 5.2. For ~X a vector field with Hel( ~X) = 0 and  an order n Vassiliev invariant, is
there an interpretation for (2n−2)( ~X)? Are all these invariants proportional? Are they related
to Milnor’s invariant for 3-component links?

Of course there is no reason to restrict to triple linking numbers.

Question 5.3. Are there asymptotics for higher order Milnor’s invariants? Are they related
to lower order asymptotics of Vassiliev invariants when higher order asymptotics vanish?

5.b. Order 2 invariants

One of the easiest knot invariants to define is the genus (also called 3-genus). For K a knot,
g(K) is defined as the minimal genus over all Seifert surfaces for K. Unfortunately this in-
variant is rather difficult to compute. There are lower bounds given by inequalities σω(K) ¶
deg(ΔK ) ¶ 2g(K) where ΔK denotes the Alexander polynomial of K. Also there are upper
bounds given by explicit constructions of Seifert surfaces (which may well not minimize
genus), as for example the one given by applying Seifert’s algorithm. In general these bounds
do not match exactly, but for ~X a vector field in Gambaudo-Ghys’ normal form, lower and up-
per bounds estimated on k ~X(p, t) grow both quadratically with t (although not at the same
rate).

Question 5.4. Is genus an order 2 asymptotic invariant? Is the degree of the Alexander
polynomial an order 2 invariant?

Note that Baader showed that if one replaces 3-genus by slice-genus (a smaller 4-dimens-
ional cousin), then the answer is yes, but g(2)slice is then equal to |Hel| on ergodic vector fields.

Also when there exists a Gambaudo-Ghys’ normal projection that exhibits only positive
crossings (as for example for Seifert flows or for the Lorenz flow), the lower and upper bounds
are asymptotically the same for all invariant measures, so that Question 5.4 has two positive
answers, but the obtained invariants once again equal helicity.

An interesting example is given by Ghrist’ flow [19], see the end of Section 1.c. It admits
many invariant measures, and for many of them helicity vanishes. Some numerical computa-
tions done by the author suggest that deg(Δk ~XGhrist (p,t)) has a non-trivial quadratic asymptotic
behavior in this case, suggesting a positive answer to Question 5.4.
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