This note is based on the lectures that I have given during the winter school Winter Braids IV, School on algebraic and topological aspects of braid groups held in Dijon on 10 - 13 February 2014. The aim of series of three lectures was to give an overview of geometrical and topological properties of 4-dimensional Lefschetz fibrations. Meanwhile, I could briefly introduce real Lefschetz fibrations, fibrations which have certain symmetry, and could present some interesting features of them.
This note will be yet another survey article on Lefschetz fibrations. There are excellent lecture notes/ survey papers/ book chapters on Lefschetz fibrations. You can, for example, look at [3], [11], [14], [20] among many others. In this note I intent to take my time on real Lefschetz fibrations as much as on Lefschetz fibrations in order not to repeat what was already done perfectly.
@article{WBLN_2014__1__A4_0, author = {Nermin Salepci}, title = {Lefschetz {Fibrations} and real {Lefschetz} fibrations}, journal = {Winter Braids Lecture Notes}, note = {talk:4}, pages = {1--19}, publisher = {Winter Braids School}, volume = {1}, year = {2014}, doi = {10.5802/wbln.5}, mrnumber = {3703251}, zbl = {1422.57057}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.5/} }
TY - JOUR AU - Nermin Salepci TI - Lefschetz Fibrations and real Lefschetz fibrations JO - Winter Braids Lecture Notes N1 - talk:4 PY - 2014 SP - 1 EP - 19 VL - 1 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.5/ DO - 10.5802/wbln.5 LA - en ID - WBLN_2014__1__A4_0 ER -
Nermin Salepci. Lefschetz Fibrations and real Lefschetz fibrations. Winter Braids Lecture Notes, Volume 1 (2014), Talk no. 4, 19 p. doi : 10.5802/wbln.5. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.5/
[1] E. Artin Theory of braids, Ann. of Math. (2), Volume 48 (1947), pp. 101-126 | DOI | MR | Zbl
[2] Denis Auroux A stable classification of Lefschetz fibrations, Geom. Topol., Volume 9 (2005), p. 203-217 (electronic) | DOI | MR | Zbl
[3] Denis Auroux; Fabrizio Catanese; Marco Manetti; Paul Seidel; Bernd Siebert; Ivan Smith; Gang Tian Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Mathematics, 1938, Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008, xiv+345 pages (Lectures from the C.I.M.E. Summer School held in Cetraro, September 2–10, 2003, Edited by Catanese and Tian) | DOI | MR
[4] Ana Cannas da Silva Lectures on symplectic geometry, Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001, xii+217 pages | DOI | MR | Zbl
[5] Kenneth Nicholas Chakiris The monodromy of genus two pencils, ProQuest LLC, Ann Arbor, MI, 1983, 133 pages Thesis (Ph.D.)–Columbia University | MR
[6] Gaston Darboux Sur le problème de Pfaff, Bull. Sci. Math., Volume 6 (1882), pp. 1-35 | Numdam
[7] Alex Degtyarev; Nermin Salepci Products of pairs of Dehn twists and maximal real Lefschetz fibrations, Nagoya Math. J., Volume 210 (2013), pp. 83-132 | DOI | MR | Zbl
[8] M. Dehn Die Gruppe der Abbildungsklassen, Acta Math., Volume 69 (1938) no. 1, pp. 135-206 (Das arithmetische Feld auf Flächen) | DOI | MR | Zbl
[9] S. K. Donaldson Lefschetz pencils on symplectic manifolds, J. Differential Geom., Volume 53 (1999) no. 2, pp. 205-236 http://projecteuclid.org/euclid.jdg/1214425535 | DOI | MR | Zbl
[10] Clifford J. Earle; James Eells A fibre bundle description of Teichmüller theory, J. Differential Geometry, Volume 3 (1969), pp. 19-43 | Zbl
[11] Terry Fuller Lefschetz fibrations of 4-dimensional manifolds, Cubo Mat. Educ., Volume 5 (2003) no. 3, pp. 275-294 | MR | Zbl
[12] Damien Gayet Hypersurfaces symplectiques réelles et pinceaux de Lefschetz réels, J. Symplectic Geom., Volume 6 (2008) no. 3, pp. 247-266 http://projecteuclid.org/euclid.jsg/1224595247 | DOI | MR | Zbl
[13] Robert E. Gompf Toward a topological characterization of symplectic manifolds, J. Symplectic Geom., Volume 2 (2004) no. 2, pp. 177-206 http://projecteuclid.org/euclid.jsg/1094072003 | DOI | MR | Zbl
[14] Robert E. Gompf; András I. Stipsicz -manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999, xvi+558 pages | MR | Zbl
[15] A. Kas On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math., Volume 89 (1980) no. 1, pp. 89-104 http://projecteuclid.org/euclid.pjm/1102779371 | DOI | MR | Zbl
[16] Mustafa Korkmaz Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices (2001) no. 3, pp. 115-128 | DOI | MR | Zbl
[17] Dusa McDuff; Dietmar Salamon Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, viii+425 pages (Oxford Science Publications) | Zbl
[18] Boris Moishezon Complex surfaces and connected sums of complex projective planes, Lecture Notes in Mathematics, Vol. 603, Springer-Verlag, Berlin-New York, 1977, i+234 pages (With an appendix by R. Livne) | DOI | MR | Zbl
[19] Burak Ozbagci; András I. Stipsicz Noncomplex smooth -manifolds with genus- Lefschetz fibrations, Proc. Amer. Math. Soc., Volume 128 (2000) no. 10, pp. 3125-3128 | DOI | MR | Zbl
[20] Burak Ozbagci; András I. Stipsicz Surgery on contact 3-manifolds and Stein surfaces, Bolyai Society Mathematical Studies, 13, Springer-Verlag, Berlin; János Bolyai Mathematical Society, Budapest, 2004, 281 pages | DOI | MR | Zbl
[21] Nermin Salepci Real Lefschetz fibrations, Université Louis Pasteur. Institut de Recherche Mathématique Avancée (IRMA), Strasbourg, 2007, ii+135 pages (Thèse, Université Louis Pasteur, Strasbourg, 2007) | MR | Zbl
[22] Nermin Salepci Real elements in the mapping class group of , Topology Appl., Volume 157 (2010) no. 16, pp. 2580-2590 | DOI | MR | Zbl
[23] Nermin Salepci Classification of totally real elliptic Lefschetz fibrations via necklace diagrams, J. Knot Theory Ramifications, Volume 21 (2012) no. 9, 1250089, 28 pages | DOI | MR | Zbl
[24] Nermin Salepci Invariants of totally real Lefschetz fibrations, Pacific J. Math., Volume 256 (2012) no. 2, pp. 407-434 | DOI | MR | Zbl
[25] Bernd Siebert; Gang Tian On hyperelliptic -Lefschetz fibrations of four-manifolds, Commun. Contemp. Math., Volume 1 (1999) no. 2, pp. 255-280 | DOI | MR | Zbl
[26] Bernd Siebert; Gang Tian On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. (2), Volume 161 (2005) no. 2, pp. 959-1020 | DOI | MR | Zbl
[27] Ivan Smith Lefschetz fibrations and the Hodge bundle, Geom. Topol., Volume 3 (1999), p. 211-233 (electronic) | DOI | MR | Zbl
[28] Ivan Smith Symplectic Geometry of Lefschetz Fibrations, University of Oxford, 1999 (Ph.D. University of Oxford)
[29] N. E. Steenrod The classification of sphere bundles, Ann. of Math. (2), Volume 45 (1944), pp. 294-311 | DOI | MR | Zbl
[30] W. P. Thurston Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., Volume 55 (1976) no. 2, pp. 467-468 | MR | Zbl
Cited by Sources: