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Course no IV

Lefschetz Fibrations and real Lefschetz fibrations

NERMIN SALEPCI

Abstract

This note is based on the lectures that I have given during the winter school Winter

Braids IV, School on algebraic and topological aspects of braid groups held in Dijon on
10 - 13 February 2014. The aim of series of three lectures was to give an overview of
geometrical and topological properties of 4-dimensional Lefschetz fibrations. Meanwhile,
I could briefly introduce real Lefschetz fibrations, fibrations which have certain symmetry,
and could present some interesting features of them.

This note will be yet another survey article on Lefschetz fibrations. There are excellent
lecture notes/ survey papers/ book chapters on Lefschetz fibrations. You can, for example,
look at [3], [11], [14], [20] among many others. In this note I intent to take my time on
real Lefschetz fibrations as much as on Lefschetz fibrations in order not to repeat what
was already done perfectly.

1. Lefschetz fibrations

Let X4 be a smooth, connected, compact, oriented 4-manifold; likewise let B be a smooth,
connected, compact, oriented 2-manifold, (in this note B will mostly be taken as S2 or D2).
A very rough definition of a Lefschetz fibration would be that it is a complex Morse function.
Precisely, a Lefschetz fibration on X is a smooth projection π : X4 → B with π(∂X) = ∂B, and
such that there are finitely many critical points in the interior of X with distinct images around
which one can find complex charts (U ⊂ X,U′ ⊂ C2, ϕU : U→ U′) and (V ⊂ B,V′ ⊂ C,V : V →
V′) such that ϕV ◦ π ◦ ϕ−1U (z1, z2) = z21 + z

2
2. Two Lefschetz fibrations will be considered to be

isomorphic if there exist orientation preserving diffeomorphisms H : X→ X and h : B→ B such
that π ◦H = h ◦ π.

By definition fibers over the regular values (called regular fibers) are compact closed con-
nected oriented surfaces of some fixed genus g (this follows basically from the inverse map-
ping theorem). Sometimes we use the term genus-g Lefschetz fibration to refer to Lefschetz
fibrations whose regular fibers are of genus g. We call the fibers over critical values the
singular fibers, (Figure 1.1 schematically illustrates a Lefschetz fibration).

Before proceeding further we note that the assumption of distinct critical values is insignif-
icant as we can always perturb (small enough) the projection so that π becomes injective on
the critical set.

Remark 1.1. As it will be useful in the study of local model, let us note that the notion of
Lefschetz fibration can be slightly generalized to cover the case of fibrations whose fibers
have non-empty boundary. In this case the boundary of X becomes naturally divided into two
parts: the vertical boundary which is the inverse image π−1(∂B), and the horizontal boundary
which forms the trivial bundle ∂F× B where F denotes a generic fiber.
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Figure 1.1

1.1. Lefschetz fibrations around singular fibers

As there is a fixed local model for a Lefschetz fibration around its critical points, we first want
to understand what can be observed by looking at the local model and how the local model
describes Lefschetz fibrations around singular fibers.

Without loss of generality, we will consider U′ = {(z1, z2) ∈ C2 : |z21+z
2
2 | ≤ ε} and V′ = {z ∈

C : |z| ≤ ε2,0 < ε < 1} so that around the critical point and the corresponding critical value
the projection looks like

π′ : U′ → V′

(z1, z2) → z21 + z
2
2 .

This fibration has one critical point at (0,0) ∈ U′ over 0 ∈ V′. The fiber over 0 defined
locally by the equation z21 + z

2
2 = (z1 + z2)(z1 − z2) = 0. This equation defines two complex

planes intersecting transversally at one point. Thus, locally we see a node as a singularity.
Meanwhile, over any other point r′ ∈ C \ {0}, the fiber is defined by the quadratic equation
z21 + z

2
2 = r

′ which defines a cylinder, see Figure 1.2.
As we all know monodromy is an essential information to understand the fibration around

its singular fiber. The monodromy of a fibration π : X→ B is the morphism

μπ : π1(B \ Δ, b)→ Mp(Fb)

where Δ is the set of critical values and Mp(Fb) is the mapping class group, the group of
isotopy classes of orientation preserving diffeomorphisms of the fiber Fb over a regular value
b. (Let us note that in order the monodromy map to be a homomorphism, on Mp(Fb) we
consider the product operation defined as ƒg = g ◦ ƒ .)

By fixing a diffeomorphism ψ : g → Fb where g is an abstract surface of genus-g, one
can consider the monodromy homomorphism in terms of g. In this case we consider

ψ∗ : Mp(g) → Mp(Fb)
ƒ → ψ ◦ ƒ ◦ ψ−1
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Figure 1.2

so that the monodromy map is defined as

ψ−1∗ ◦ μπ : π1(B \ Δ, b)→ Mp(g).

There is a simple way to understand the monodromy of π using π′ : U′ → V′ and by
considering a branched covering description of the fibers of π′ using an auxiliary projection
p1 : C2 → Cz1 p1 : (z1, z2)→ z1. For such a projection, let us define the fiber F′′ ,

′ ∈ C of π′

as the double branch cover z22 = z21 −
′ of Cz1 with branching set satisfying z21 −

′ = 0. As
the only critical value is 0, we need to understand what happens to the fiber as we go around
once along a simple closed curve surrounding the origin positively. Let us consider the loop
γ(θ) = {′ = δeθ ∈ C : θ ∈ [0,2π],0 < δ << 1}. It is easy to see that when θ moves from 0 to
2π, the two points satisfying z21 = ′ switch their places by turning on the positive direction
on Cz1 (that by the way corresponds to the generator of the braid group with 2 strings as
it defines a diffeomorphism of Cz1 \ {2 points}) whose support is a sufficiently small disk
D ∈ Cz1 containing the branching points (points satisfying z21 = ′). To see the effect of this
on the fiber F′′ ,

′ ∈ C \ {0}, let us denote by α′ ⊂ F′′ the inverse image by p1 of the line
in D ∈ Cz1 connecting the two branching points (see Figure 1.3) and let ν(α′) = p−11 (D), a
sufficiently small closed neighborhood α′ ∈ F′′ . We identify ν(α′) with S1 × [0,1]. When θ

make a full turn what we observe on S1 × [0,1] is the diffeomorphism (which is identity on
the boundary S1 × {0,1}) that we refer as (positive) local Dehn twist:

S1 × [0,1] → S1 × [0,1]
(θ, t) → (θ+ 2πt, t).

Now, let α = −1U (α
′) and ν(α) ⊂ Fb denote the inverse image of the neighborhood ν(α′) ⊂

F′b′ by the chart map U. Then the (positive) Dehn twist on Fb is defined as the extension
by identity of the local Dehn twist to the outside of ν(α) (such an extension is meaningful
as the local Dehn twists is the identity on the boundary of ν(α)). We will use the notation tα
for the positive Dehn twist along the curve α, and negative Dehn twist along the same curve
will then be the inverse, t−1

α
.) It might be useful to note here that Dehn twists are important

diffeomorphisms since their isotopy classes generate the mapping class group [8]. (Please
note also that we will keep the same notation for both the honest diffeomorphism and its
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α

Figure 1.3

isotopy class. Recall that when isotopy classes are considered, the product notation will be
used instead of composition.)

Remark 1.2. If the curve α bounds a disk on the surface, the Dehn twist along α is isotopic
to identity; hence, it is the identity element of the mapping class group. This is because every
diffeomorphism of D2 fixed on ∂D2 = S1 is isotopic to identity. In this case, the singular fiber
which is obtained by collapsing the vanishing cycle to a point has an embedded sphere. It
is not hard to see that this sphere has self-intersection -1 (the calculation is very similar to
the one we make for framing in Section 1.3). Fibrations without such phenomenon are called
relatively minimal in the literature. We will always assume that fibrations are relatively min-
imal and do not use the terminology. This assumption does not cause any loss of generality.
Indeed, a special care is needed only for the classification results, discussions of the next two
sections apply for all Lefschetz fibrations.

By definition Dehn twists do not depend on the particular choice in the isotopy class of α.
Therefore, it is determined by the isotopy class of α. Thus, to understand possible models of a
neighborhood of a singular fiber of a Lefschetz fibration, we are interested in the classification
(up to diffeomorphism) of the isotopy classes of essential simple closed curves on an oriented
surface.

Topologically there are two types of simple closed curves: separating, non-separating.
Separating (respectively non-separating) means that the complement of the curve has two
pieces (respectively one piece). Up to diffeomorphism and isotopy there exists only one non-
separating curve on an oriented surface. The number of separating ones, however, is deter-
mined by how the curve separates the genus of the surface. Thus, there are b g2 c (integral part
of g

2 ) separating curves. Hence, there are [ g2 ]+1 possible models for a neighborhood. Indeed
each such model is realized. There are many ways to construct corresponding fibrations, one
of which will be discussed later.

1.2. Factorization of the monodromy and Hurwitz equivalence classes

Our aim is to understand the image of the monodromy morphism for fibrations over D2. For
this purpose we want to choose a basis (γ1, . . . , γn) for π1(D2 \ Δ, b) where n = |Δ| and b is
the marked regular value.

Let us consider the set of rays r from the base point b passing through a critical value.
Generically each ray will pass through at most one critical value (if not, we can always perturb
the fibration slightly so that this would be the case.) The rays r are enumerated by the order
at b considered in the positive direction. Now, around critical values we choose a set of
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sufficiently small disjoint loops, each encircling positively a unique critical value. Let γ be
the homotopy class of the loop obtained by conjugated concatenation of the small disjoint
loops with the portion of the ray between b and the point of the loop nearest to b (see
Figure 1.4). By construction γ1 ∗ γ2 ∗ . . .∗ γn is homotopic to ∂D2 with positive orientation.

γ1

γ2γn

1
2

n

Figure 1.4

A basis obtained as above is called as geometric basis or Artin basis. By the construction,
the choice of geometric basis is not unique. It is a classical result due to E. Artin [1] that two
geometric bases are related by an element of the braid group Bn = 〈σ,  = 1, . . . n− 1 : σσj =
σjσ, |− j| ≥ 2, σσ+1σ = σ+1σσ+1〉. The action is given by (see also Figure 1.5):

(. . . , γ, γ+1, . . .)
σ−→ (. . . , γ ∗ γ+1 ∗ γ−1


, γ, . . .).

γi

γi+1 γi

γi ∗ γi+1 ∗ γ−1
i

Figure 1.5

So by the above discussions, to each basis (γ1, . . . , γn), we assign an n-tuple (tα1 , . . . , tαn )
of Dehn twists such that tα1 tα2 . . . tαn = μπ(∂D

2). We call such an n-tuple a monodromy factor-
ization or n-factorization of μπ(∂D2). The ambiguity in choosing the basis (γ1, . . . , γn) reads
on n-factorization as

(. . . , tα , tα+1 , . . .)
σ−→ (. . . , tα tα+1 t

−1
α
, tα , . . .).

We call the above change a Hurwitz moves and consider two factorizations strong Hurwitz
equivalent if they are related by finite sequence of Hurwitz moves; we consider them weak
Hurwitz equivalent if in addition we make a global conjugation by an orientation preserving
diffeomorphism.

Theorem 1.3 (Kas, 1980, [15]). There is bijection between the set of isomorphism classes of
Lefschetz fibrations over D2 and the set of (weak) Hurwitz equivalence classes of factorization
of the monodromy along ∂D2.

Note that one direction of this theorem is clear from the above discussions. To give the idea
for the other direction, we will look at the local model with a slightly different point view which
we present in the next section. Theorem of A. Kas asserts the importance of the classification
of Hurwitz equivalence classes of the monodromy factorization. However, classification of
Hurwitz equivalence classes is a subtle question and the answer is not known in general.
The case of g = 1, n = 2 is studied in [7] in which an explicit characterization of elements
admitting 2-factorization is given as well as a complete classification of Hurwitz equivalence
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classes of product of two Dehn twists. According to main results, elements which admit 2-
factorization have at most two Hurwitz equivalence classes and there is unique example in
which one weak equivalence class constitutes two strong equivalence classes. In all the other
cases weak and strong classes match [7].

1.3. Handle decomposition description

We now look at the fiber F′t′ := {z21 + z22 = t′} ⊂ C2 where t′ is taken to be in R ⊂ C and
consider R2 ∩ {z21 + z22 = t′} ⊂ C2. This intersection is the curve 21 + 22 = t′ where j =
Re(zj), j = 1,2 and it bounds a disk Dt′ on R2 ⊂ C2. When t′ approaches 0, this curve shrinks
to a point creating the corresponding singular fiber. The curve is called the vanishing cycle.
The vanishing cycle is exactly the curve α′ ⊂ F′t′ described above and thus the monodromy
around the corresponding singular fiber is the Dehn twist along the vanishing cycle.

The disk Dt′ ⊂ R2 ⊂ C2 bounded by the vanishing cycle {(1, 2) ∈ R2 : 21 + 
2
2 = t′} ⊂ F′t′

is called thimble. A neighborhood of the thimble Dt′ can be viewed as D2×D2 ⊂ R+ R2 ⊂ C2.
We can interpret a copy of D2 × D2 as a 4-dimensional 2-handle. As a matter of fact, a
neighborhood of a singular fiber of a Lefschetz fibration can be constructed abstractly from
g×D2 by attaching a 4-dimensional 2-handle D2×D2 on ∂(g×D2), where g is an abstract
surface diffeomorphic to the fiber over the base point chosen for describing the monodromy.

The attachment of the 2-handle D2 × D2 is performed by choosing an embedding ∂D2 ×
D2 → ∂(g×D2). Such an embedding can be encoded by an embedding φ0 : S1×{0} ,→ ∂(g×
D2) with its trivial normal bundle and an identification of the normal bundle ν(φ0(S1 × {0}))
with S1 × R2. The choice of the identification can be seen as an element of π1(SO(2), d)
torsor, i.e. the difference of two choices is an element of π1(SO(2), d), so it can be identified
by an element of Z (cf. [14]). Such a number is usually referred to as framing.

To understand how the framing should be chosen we look back to the local model. For
this purpose, consider φ0 : S1 × {0} ,→ ∂(F′b′ × D2) such that φ0

�

S1 × {0}
�

= α′ × {b′},
and fix a basis 〈(1,0,0,0), (0,1,0,0), (0,0, ,0), (0,0,0, )〉 of R2 × R2. Consider a point p =
(
p
t′ cos(θ),

p
t′ sin(θ),0,0) on α′ ⊂ F′t′ . Consider the vector field ξp = (− sin(θ), cos(θ),0,0)

tangent to F′t′ . Note that ξp is a vector field tangent to F′t′ and normal to Tpα′, thus ξp =
(0,0,− sin(θ),  cos(θ)) is a vector in the normal space of φ0(S1 × {0}) at p. As dimension
of the normal space is 2, it suffices for us to compare ξp with either one of the constant
vector fields (0,0, ,0) or (0,0,0, ). Namely, we need the winding number of ξp with respect
to, for example, the constant vector field (0,0,0, ) which is easily calculated as 1. Thus,
the framing is 1 with respect to the orientation of R2 × R2. However, as we have chosen
orientation preserving charts, the orientation we are interested is the same as the one of
C2 which is opposite to the orientation of R2 × R2. Thus, the framing we need to consider is
indeed -1. (This calculation, as it is, is not my own idea, you can find a version of it in [20]).

As a conclusion, we see in this section that given an ordered set (α1, . . . , αn) of simple
closed curves on g → Fb, one can construct a Lefschetz fibration over D2 by successive 2-
handle attachments along α with framing -1 relative to the product framing on ∂(g×D2). For
certain choice of a basis of π1(D2 \ Δ, b), the fibration obtained this way has the monodromy
factorization (tα1 , . . . , tαn ).

1.4. Classification results of genus-g Lefschetz fibrations over S2

Let us start with discussing the case of g = 0. As all simple closed curves on S2 bound a disk
(and we assume that vanishing cycles do not bound a disk on the fiber), all genus-0 Lefschetz
fibrations are indeed S2 bundles over S2. It is worth mentioning here that there are two types
of such bundles: the product bundle and the twisted product S2×̃S2. This is a classical result
from [29] in which the classification of r-sphere bundles over s-sphere is given.
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As for the higher genus fibrations we first note that the theorem of A. Kas can be modi-
fied to cover the case of Lefschetz fibrations over S2. First of all if we have a fibration over
S2, we can chose a regular fiber, trivialize a small neighborhood of this fiber and consider
the complement of this trivialize neighborhood to obtain Lefschetz fibration over D2 whose
monodromy along ∂D2 is the identity. Conversely, if the monodromy along ∂D2 of a fibration
over D2 is the identity, then we can extend this fibration to a fibration over S2 by gluing a
trivial fibration g × D2 along the boundary, g × S1. Such a gluing can be performed by a
choice of S1 family of orientation preserving diffeomorphisms g → g. At a chosen point of
S1, one can fix the diffeomorphism to be the identity, so that the family can be interpreted
as an element in π1(Dƒ ƒ+(g), d) where Dƒ ƒ+(g) denotes the space of orientation preserv-
ing diffeomorphisms of g. Thus the different choice of the extension is determined by the
homotopic properties of the space Dƒ ƒ+(g). Note that if such an extension is unique, then
the Hurwitz equivalence classes of the factorization of the identity classify genus-g Lefschetz
fibrations over S2.

Indeed, we know:

Theorem 1.4 (Earle-Eells, 1969, [10]). If g ≥ 2, then the components of Dƒ ƒ+(g) are
contractible. If g = 1, the identity component of Dƒ ƒ+(T2) contains T2 as a deformation
retract.

Therefore, in the case of g > 1 the extension is unique. Despite the fact that a special care
is needed in the case of g = 1, it is the only case for which an explicit classification is known,
that will be the subject of the next section.

1.4.1. Elliptic Lefschetz fibrations

In the sequel, genus-1 Lefschetz fibrations will be called an elliptic Lefschetz fibrations in
reference to the elliptic surfaces that they are related to. We have the following classification
result.

Theorem 1.5 (Moishezon-Livné, 1977, [18]). Elliptic Lefschetz fibrations over S2 are classi-
fied by the number of the critical values, which can only be a multiple of 12. Let E(1) denote
the isomorphism class of fibrations with 12 critical values. Then, the class E(k) of fibrations
with 12k critical values can be taken as the k-fold fiber sum E(1)♯FE(1) · · · ♯FE(1).

This theorem is presented in the book “Complex surfaces and connected sums of complex
projective planes" by B. Moishezon [18]. The book has an appendix by R. Livné in which he
present a classification of Hurwitz equivalence classes of n-factorization of the identity in
PSL(2,Z). B. Moishezon modify this result to the group SL(2,Z). Indeed, the classes, E(k),
correspond exactly the n-factorization of the identity. The conclusion is that n can only be a
multiple of 12, and for each n, there is a unique class. The theorem, thus, also implies that
the problem of non-uniqueness of the extension of fibrations aver D2 to fibrations over S2

that we have discussed in the previous section is indeed not essential and there is a way
to get rid of it. It is basically because of the fact that the monodromy group (by which we
understand the image of μπ) generates Mp(T2) , (see Lemma 7, [18]). As it will be used
later, it is worth mentioning here that when the monodromy group generates the mapping
class group, the fibration is said to have a transitive monodromy.

Now let us construct an elliptic fibration with only 12 critical values.
Consider two generic homogenous polynomials P0 and P1 of degree 3 defining two non-

singular cubic curves C0 and respectively C1 in CP2. Topologically C0 and C1 are oriented
surfaces of genus 1 = (3−1)(3−2)

2 and generically they intersect at 9 distinct points. Consider
the pencil of cubics defined by t0P0 + t1P1 where t0, t1 ∈ C and are not simultaneously zero.
This pencil covers CP2 and defines a projection CP2\{C0∩C1}→ CP1 by t0P0+t1P1 → [t0, t1].
Each fiber of this projection is a cubic curve punctured at 9 points of common intersection. By
blowing up these nine points we get CP2♯9CP2 together with the projection π : CP2♯9CP2 →
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CP1. For generic choice of P, singular fibers of π are of nodal type as prescribed in the local
model of Lefschetz fibrations.

Let us now count the number of critical values by means of Euler characteristics of the
concerning spaces. We have χ(CP2♯9CP2) = 12 while regular fibers being tori have χ(T2) =
0. So regular fibers have no effect on the count of Euler characteristic. Singular fibers are
obtained from tori by pinching a simple closed to a point. Topologically they are spheres with
two distinct points identified, so they have Euler characteristic 1. Therefore, π : CP2♯9CP2 →
CP1 has 12 singular fibers. This fibration will be the model we have in mind when we refer to
the class E(1).

To find a representative of the class E(k), we perform k-fold fiber sum of E(1). Recall that
the fiber sum is a connected sum which respects the fiber structure. To perform a fiber sum
we take out a sufficiently small neighborhood of a regular fiber which can be identified with
T2 ×D2 considered with its projection T2 ×D2 → D2. Then we glue along the boundaries with
a fiber preserving orientation reserving diffeomorphism.

As mentioned above elliptic Lefschetz fibrations can be considered as special elliptic sur-
faces. In that sense it might be interesting to investigate whether or not there is an algebraic
realization or not. The theorem of B. Moishezon and R. Livné implicitly implies that each class
of elliptic Lefschetz fibration can indeed be realized algebraically as we can find explicit model
for each class. Consider, for example, a generic homogeneous polynomial Qk(z0, z1, z2, t0, t1)
of bi-degree (3, k) in variable (z0, z1, z2, t0, t1, ) homogeneous of degree k in (t0, t1) and of
degree 3 in (z0, z1, z2). For k = 1, for exemple, we have Q1 = t0P0(z0, z1, z2) + t1P1(z0, z1, z2)
where P,  = 1,2 homogenous polynomials of degree 3. The polynomial Qk defines an alge-
braic subset of CP2 × CP1 which we consider as the total space of E(k). The projection is,
then, obtained from the restriction of the projection to the second factor CP2 × CP1 → CP1.
Generically, this projection defines a genus-g Lefschetz fibration with 12k singular fibers.

1.4.2. Genus-g ≥ 2 Lefschetz fibrations

Although, in the literature some interesting features of genus-g > 2 Lefschetz fibrations can
be found (e.g. [2], [16]), the complete classification is not yet known. Meanwhile, the case
of g = 2 is quite well-understood by works of B. Siebert and G. Tian [25, 26] as well as
K. N. Chakiris [5] and I. Smith [27] .

Let us first consider the following relations in the mapping class group of a genus-2 surface
(note also that these relations can be generalized to any genus).

(A) (t1t2t3t4t5t5t4t3t2t1)2 = id,
(B) (t1t2t3t4t5)6 = id,
(C) (t1t2t3t4)10 = id,

where t,  = 1, . . . ,5 denotes the Dehn twist along the curves shown in Figure 1.6.

1

2

3

4

5

Figure 1.6:

By the theorem of A. Kas, the above relations correspond to a Lefschetz fibration over S2.
These fibrations are indeed building blocks of certain class of genus-2 Lefschetz fibrations by
the following theorems.
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Namely we have:

Theorem 1.6 (Siebert-Tian, 2005, [26]). Let π : X → S2 be a genus-2 Lefschetz fibration
with transitive monodromy. If there is no separating vanishing cycle then π is isomorphic to
a holomorphic Lefschetz fibration.

The first version of the below theorem appeared in [5] and later rediscovered by I. Smith [27]
independently.

Theorem 1.7 (Chakiris, 1983 [5]; Smith, 1999 [27]). Assume that a holomorphic genus-2
fibration has no separating vanishing cycle. Then, it is a fiber sum of the shape AmBn = 1
or Cr = 1 where m,n, r are non-negative integers and where A,B,C are the words presented
above.

Combining the above two theorems, we conclude that genus-2 Lefschetz fibrations with
transitive monodromy and without separating vanishing cycles can be written as fiber sum of
the three fixed models given above. The condition that there is no separating vanishing cycle
is essential as it is known that there are infinitely many non-holomorphic genus-2 Lefschetz
fibrations (see [19],[28]).

Note that in the case of g = 1 there is no essential separating curve and the monodromy
happens to be always transitive, in that sense we may interpret the above conclusion as the
generalization of the theorem of B. Moishezon and R. Livné.

2. Real Lefschetz fibrations

Intuitively, real structures are topological generalizations of the complex conjugation on com-
plex algebraic varieties defined over the reals. On an oriented 4-manifold, a real structure
is an orientation preserving involution whose fixed point set is of dimension 2 -if it is not
empty- while on an oriented surface it is an orientation reversing involution (and its fixed
point set is either of dimension 1 or empty). We consider real structures up to conjugation by
an orientation preserving diffeomorphism.

Real Lefschetz fibrations are Lefschetz fibrations where the total and base space have real
structures compatible with the fibration. Namely, for real structures cX : X→ X and cB : B→ B
the following diagram commutes

X
cX //

π

��

X

π

��

B
cB // B.

Real Lefschetz fibrations appear, for instance, as blow-ups of pencils of hyperplane sec-
tions of complex projective algebraic surfaces defined by real polynomial equations. For ex-
ample, in the construction of E(1) presented previously if the polynomials P0 and P1 are
chosen to have real coefficients, the construction yield a real E(1).

We consider two real Lefschetz fibrations π : X → B and π′ : X′ → B′ to be isomorphic if
there exist orientation preserving diffeomorphisms H : X → X′ and h : B → B′ such that the
following diagram is commutative.

X
H //

π
��

X′

π′

��

X

cX
??

H //

π

��

X′
cX′

??

π′

��

B h // B′

B h //

cB
??

B′
cB′

??
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By definition the sets of critical points and of critical values are invariant under the action
of the corresponding real structure. One observes two types of critical points/ values: the
ones fixed by the real structure (that we call real critical points/ values), and those which
come as a pair of critical values interchanged by the real structure. Fibers over the real
points of the (B, cB) are fixed under the action of cX, and thus, inherit a real structure from
the real structure cX of the total space. We call such fibers the real fibers.

Figure 2.1

2.1. Real Lefschetz fibrations around singular fibers

In this section we investigate real Lefschetz fibrations around a real singular fiber.
It will be convenient for us to interpret a neighborhood of a real singular fiber as a real

Lefschetz fibration π : X → D2 with only one critical value. The real structure on D2 is taken
as the standard reflection (for example, the complex conjugation for D2 ⊂ C). Note that the
critical value and the critical point are necessarily real.

By definition we can find equivariant local charts (U,ϕU), (V,ϕV) around the critical point
and the critical value such that U and V are closed discs and π|U : (U, cU) → (V, conj) is
equivariantly isomorphic (via ϕU and ϕV) to either of π′± : (U

′
±, conj)→ (V

′, conj), where

U′± = {(z1, z2) ∈ C
2 : |z1| ≤

p
ε,
�

�

�z21 ± z
2
2

�

�

� ≤ ε2}

and
V′ = {z ∈ C : |z| ≤ ε2, 0 < ε < 1}

with π′±(z1, z2) = z
2
1 ± z

2
2.

The above real local models, π′± : U
′
± → V′, can be seen as two real structures on the neigh-

borhood of a critical point. It is easy to see that these two real structures are not equivalent
as the difference already appear at the level of the singular fibers, see Figure 2.2.

To understand the action of the real structures on the regular real fibers of π′±, we can use
the branched covering defined by the projection (z1, z2) → z1. In the case of π′+, there are
two types of real regular fibers; the fibers F′t′ with t′ < 0 have no real points, their vanishing
cycles have invariant representatives, and in this case, c acts on the invariant vanishing
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z2
1 − z2

2 = 0z2
1 + z2

2 = 0

c

real part

c

Figure 2.2:

cycles as an antipodal involution; the fibers F′t′ with t′ > 0 have a circle as their real part and
this circle is an invariant (pointwise fixed) representative of the vanishing cycle. In the case
of π′−, all the real regular fibers are of the same type and the real part of such a fiber consists
of two arcs each having its endpoints on the two different boundary components of the fiber;
the vanishing cycles have invariant representatives, and c acts on them as a reflection.

α
c

−r 0 r

real part

αc

z2
1 + z2

2 = −r z2
1 + z2

2 = rz2
1 + z2

2 = 0

(z1, z2) → z2
1 + z2

2

z2
1 − z2

2 = 0 z2
1 − z2

2 = rz2
1 − z2

2 = −r

(z1, z2) → z2
1 − z2

2

αα

c c

−r r

real part

0

Figure 2.3

Using the ramified covering (z1, z2)→ z1, we observe that the horizontal boundary, of the
fibration π′± is equivariantly trivial and has a distinguished equivariant trivialization. More-
over, since the complement of U in π−1(V) does not contain any critical point, X can be
written as union of two real Lefschetz fibrations with boundary: one of them, U → V, is iso-
morphic to π′± : U

′
± → V′, and the other one is isomorphic to the trivial real fiber bundle

T → V′ whose real fibers are equivariantly diffeomorphic to the complement of an open reg-
ular neighborhood of the vanishing cycle α ⊂ Fb. The action of the complex conjugation on
the boundary components of the real fibers of T → V′ determines the type of the model,
π′± : E± → V′ glued to T → V′: in the case of π′+ it switches the boundary components while
in the case of π′− boundary components are preserved (and the complex conjugation acts as
a reflection on each of them).

Therefore, around a real singular fiber we have two different real regular fibers (defined
up to isotopy): one on the left and the other on the right of the singular fiber. (Here right/ left
makes sense once we fixed the orientation on the real part of (D2, conj). We call fibrations
with fixed orientation on the real part of the base directed). Let us denote the real structure
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inherited on a real fiber lying on the left of the singular fiber by c−, respectively we denote
by c+ the one appearing on a real fiber lying on the right of the singular fiber. From the
equivariant local model we see that we can find a representative of the vanishing cycle α
such that c−(α) = c+(α) = α. One also observes a very important property of the monodromy:
tα = c+◦c− = c−c+. Therefore, two of the three variants are essential information in describing
the neighborhood of a real singular fiber. Let us fix the pair (c−, α).

Conversely, given a couple (c, α) where c is a real structure on a surface and α is a simple
closed curve such that c(α) = α, one can construct a real Lefschetz fibration over D2 with
a unique singular fiber obtained by pinching the curve α on a nearby chosen real regular
fiber. A priori there is an ambiguity of the choice of real structure c = c− or c = c+, such
an ambiguity can be omitted by keeping track of the orientation of the real part of D2 (for
detailed and more rigorous explanation you can look at [21, 24]). The upshot is that the
diffeomorphism type of the pair (c, α) (by which we mean that the pair (c, )) can be re-
placed by (ƒ ◦ c ◦ ƒ−1, ƒ (α)) where ƒ is an orientation preserving diffeomorphism) classifies
neighborhoods of a real singular fiber of directed real Lefschetz fibrations. There is a way
to enumerate such pairs. As before one should consider the cases when the curve α is non-
separating and separating one at a time. When α is non-separating, there are 6 classes if
g = 1; 8g − 3 classes if g > 1 and is odd; 8g − 4 classes otherwise. The formula concerning
the case when α is separating is a bit more complicated and can be found in [21, 24].

Remark 2.1. Indeed the property that monodromy decomposes into product of two real
structures can be observed along any loop on which the real structure acts as reflection. For
example, along the boundary of D2 for real Lefschetz fibrations over D2. It is, thus, interest-
ing to investigate elements of Mp(g) which have such decomposition property. In [22] a
characterization of elements of Mp(T2) admitting a decomposition into product of two real
structures is given.

2.2. Classification of real elliptic Lefschetz fibrations

In this section we give a real version of the theorem of B. Moishezon and R. Livné for certain
class of real Lefschetz fibrations.

Let π : X → S2 be a directed real elliptic Lefschetz fibration. We consider the restriction,
πR : XR → S1, of π to the real part XR of X. By definition, fibers of πR are the real parts of
the real fibers of π. The base S1 is oriented, whereas the total space XR is either empty or a
surface not necessarily oriented nor connected.

By definition of real Lefschetz fibrations, the map πR is an S1-valued Morse function on XR
whose regular fibers can be S1, S1 q S1 or the empty set (this is a direct implication of the
classification of real structures on T2). On the other hand, singular fibers are either a wedge
of two circles (this occurs in the case when the critical point is of index 1) or a disjoint union
of S1 with an isolated point or just an isolated point (these cases occur when the critical point
is of index 0 or 2). As an immediate consequence, we note that the real part XR is not empty
if π has a real critical value.

For the sake of simplicity, we first focus on fibrations which admit a real section. By a real
section, we understand a section s : S2 → X commuting with the real structures. Existence of
a real section ensures that fibers of πR are never empty, so, in this case, there are only two
possible topological types for regular fibers: S1 or S1 q S1.

We now introduce a decoration on the base S1 of πR : XR → S1 as follows. First, label the
critical values of πR by “×" or “◦" according to the parity of indices of the corresponding
critical points. Namely, if the corresponding critical point is of index 1, label the critical value
by “×", otherwise by “◦". (Note that πR has critical values as long as π has real critical values.)
Second, consider a labeling on the set of regular intervals, S1 \ {critical values}. Over each
regular interval the topology of the fibers of πR is fixed; moreover, it alternates as we pass
through a critical value. We label regular intervals over which fibers have two components by
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doubling the interval, see Figure 2.4. Intervals over which the fibers are a copy of S1 remain
unlabeled.

x 
o 

o 

o o 

o 

o 

x 

x 

x 

x 

x 

Figure 2.4

We, now, consider some “standard" pieces out of which all possible configurations can be
built. It is convenient for us to take pieces with two consecutive critical values (in order to
avoid the problem of matching real structures). Let us choose a regular value on S1 (for some
later use we choose the point on an unlabeled regular interval). With respect to this point and
the orientation of S1, we have 4 instances for a pair of two critical values. In order to simplify
the decoration, for each instance we introduce a new notation as shown in Figure 2.5.

xx

ox

o x

o o

Figure 2.5

The oriented S1 decorated using elements of the set S = { , ,>,<} is called an oriented
necklace diagram (an example is shown in Figure 2.6). We call the elements of the set S
(necklace) stones and the pieces of the circle between the stones (necklace) chains. Two
oriented necklace diagrams are considered identical if they contain the same types of stones
going in the same cyclic order.
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o

x

x
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x 

x 

o
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Figure 2.6

It is obvious from the construction that oriented necklace diagrams are invariants of di-
rected real elliptic Lefschetz fibrations. For non-directed real Lefschetz fibrations, we do not
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have a preferable orientation on the necklace diagram. Non-directed fibrations, hence, de-
termine a pair of oriented necklace diagrams related by a mirror symmetry in which -type
and -type stones remain unchanged, while >-type and <-type stones interchanged.

Now we want to assign a monodromy to each necklace stone. First recall that Mp(T2) =
SL(2,Z), due to the fact that every diffeomorphism ƒ : T2 → T2 is isotopic to a linear dif-
feomorphism. The latter diffeomorphisms by definition are induced on T2 = R2/Z2 by a
linear map R2 → R2 defined by a matrix A ∈ SL(2,Z). Note that we can naturally identify
T2 = H1(T2,R)/H1(T2,Z) and interpret matrix A as the induced automorphism ƒ∗ in H1(T2,Z).
Let  denote the simple closed curve on T2 represented by the equivalence class of the hor-
izontal interval  × 0 ⊂ R2, and b is similarly represented by the vertical interval 0 × . We
have the intersection number (, b) is equal to 1; hence, the homology classes represented
by these curves are integral generators of H1(T2,Z). Using Picard-Lefschetz formula we get

A = t∗ =
�

1 1
0 1

�

, B = tb∗ =
�

1 0
−1 1

�

.

We have SL(2,Z) = 〈A,B : ABA = BAB, (AB)6 = d〉. Also, it is convenient to consider another
presentation of SL(2,Z) = 〈X, Y : X2 = Y3, X4 = d〉 obtained by replacing X = ABA, and Y = AB.

Now, note that each real structure, c : T2 → T2, induces an isomorphism c∗ on H1(T2,Z) ∼=
Z⊕Zb that defines two rank 1 subgroups Hc±(T

2) = {γ ∈ H1(T2,Z) : c∗γ = ±γ}. (If c has one
real component, then H1(T2,Z)/〈Hc+, H

c
−〉 = Z/2Z, otherwise, H1(T2,Z) = Hc+⊕H

c
−.) Moreover,

a real structure c on a real fiber F defines a pair of bases ±(, b) so that ± b generates Hc±.
This defines a canonical identification of H1(F,Z) with H1(T2,Z).

To each decoration around a critical value q, we assign the transition matrix Pq from a basis
of Hc+⊕H

c
− ⊂ H1(T

2,Z) to a basis of Hc
′

+ ⊕H
c′

− ⊂ H1(T
2,Z) where c, c′ are left and, respectively,

right real structures on the real fibers near Fq. Note that the choice of the basis is determined
up to sign ; the matrices we obtained are indeed in PSL(2,Z) = SL(2,Z)/±  = 〈X, Y : X2 = Y3 =
d〉. Matrices assigned to stones will then be the product of two matrices associated to the
corresponding decoration. Because we choose the marked point on an unlabeled interval,
the matrices have coefficients in 1

2Z. However, they are conjugate (by a fixed matrix) to the
following matrices in PSL(2,Z). As it is convenient for us to work with PSL(2,Z) we fixed the
monodromies of stones as the following elements in PSL(2,Z).

P = YXY
P = XYXYX
P> = Y2X
P< = XY2

The matrices P ,P ,P>,P< are called monodromies of stones. The product (with respect to
a chosen marked point and to the orientation) of monodromies of necklace stones is called
the monodromy relative to the marked point of the oriented necklace diagram. The mon-
odromy of an oriented necklace diagram is, thus, defined as the conjugacy class of its mon-
odromy relative to a marked point.

We will now focus on fibrations whose critical values are all fixed by the action and call such
fibrations totally real. It is not hard to see that in this case the monodromy of the necklace
diagram becomes the identity element in PSL(2,Z).

We are ready now to state:

Theorem 2.2 (S., 2007, [21, 23]). There exists a one-to-one correspondence between the
set of oriented necklace diagrams with 6k stones and with the identity monodromy and the
set of isomorphism classes of directed totally real elliptic Lefschetz fibrations E(k), k ∈ N,
that admit a real section.

Corollary 2.3 (S., 2007, [21, 23]). There exists a bijection between the set of symmetry
classes of non-oriented necklace diagrams with 6k stones and with the identity monodromy
and the set of isomorphism classes of non-directed totally real E(k), k ∈ N which admit a real
section.
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Thus, each necklace diagram defines a decomposition of the identity in PSL(2,Z) into a
product of 6k elements that are chosen from the set of monodromies of necklace stones.
There is a simple algorithm to find all necklace diagrams associated with E(k). Applying the
algorithm, we obtain the complete list of necklace diagrams of E(1).

The following theorem concerns n = 1.

Theorem 2.4 (S., 2007, [21, 23]). There exist precisely 25 isomorphism classes of non-
directed totally real E(1) admitting a real section. These classes are characterized by the
non-oriented necklace diagrams presented in Figure 2.7.

Figure 2.7

The assumption of admitting a real section is not imperative. The classification without this
assumption can be done by means of refined necklace diagrams. A refinement of a necklace
diagram is obtained by replacing each -type stone with one of the following refined stones,
, , , . If the refined necklace diagram is identical to the underlying necklace diagram

then the corresponding real Lefschetz fibration admits a real section.
It is clear that if a real structure on a fiber of π has no real component, then the nearby

critical values can only be of type “◦". In other words, existence or lack of a real section
influences only -type necklace stones. Both of the refined stones of type , correspond to
the case where the real structure on the real fibers over the interval between the two critical
values has 2 real components. Already the real part distinguishes the cases of and , see
Figure 2.8. (In Figures 2.8 and 2.9 below, the dotted part depicts the traces of the curves on
which the inherited real structure acts as the antipodal map.)

o o o o 

Figure 2.8

The refined stones and correspond to the case where the real structure on the real
fibers of π has no real component. As depicted in Figure 2.9, the real part of XR does not
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distinguish the two situations associated with , . The difference between and (as well
as between and ) can indeed be conceived by comparing the equivariant isotopy classes
of the two vanishing cycles corresponding to the two critical values of the necklace stone
(by equivariant isotopy, we mean an isotopy which commutes with the real structure). In the
case of (respectively, ) the equivariant isotopy classes of the two vanishing cycles are
the same, while in the case of (respectively, ) the two vanishing cycles are of different
equivariant classes.

o o o o 

Figure 2.9

There is no difference between real structures with 2 real components and real structures
with no component on the homological level. As a consequence, the calculation of the mon-
odromy is not affected by the refinement. Thus we have:

Theorem 2.5 (S., 2007, [21, 23]). There is a one-to-one correspondence between the set of
oriented refined 6k-stone necklace diagrams whose monodromy is the identity and the set
of isomorphism classes of directed totally real E(k), k ∈ N.

It is worth mentioning here that unlike usual elliptic Lefschetz fibrations, real elliptic Lef-
schetz fibrations are not always fiber sum. For example the fibration corresponding to the
necklace diagram shown in Figure 2.10 cannot be written as the fiber sum of two real Lef-
schetz fibrations [21, 23]. This comes from the analysis of possible division of this necklace
diagram into necklace diagrams of 6 stones.

Figure 2.10

As in the case of Lefschetz fibrations we can investigate if there is algebraic realization of
the real fibrations. In the case of real Lefschetz fibrations there are classes which cannot be
realized algebraically. For examples real E(1) corresponding to necklace diagrams shown in
Figure 2.11 are not algebraically realized, [21, 23]. However, we show that totally real elliptic
fibrations admitting a real section with χ(XR) = χ(X) are all algebraic (recall that in general
one has χ(XR) ≤ χ(X), known as Thom-Smith inequality). In [7], we generalize this result
to fibrations which are not necessarily totally real using generalized necklace diagrams, the
so-called pendant necklace diagrams. The Idea of pendant necklace diagrams is based on
the fact that such fibrations can be considered in three pieces: neighborhood of the real
locus (determined by its necklace diagram), a symmetric pair of Lefschetz fibrations over a

IV–16



Course no IV— Lefschetz Fibrations

disk with r critical values (determined by the Hurwitz equivalence classes of r-factorizations,
called r-pendants).

Figure 2.11

3. Geometric properties of Lefschetz fibrations

3.1. Digression: symplectic structures

In this section I will make a quick review of symplectic vector spaces. For further reading you
can look at [4], [17].

Let V be a vector space over R. A symplectic structure on V is a skew-symmetric non-
degenerate bilinear form Ω and we call the pair (V,Ω) a symplectic vector space. The non-
degeneracy condition on the skew-symmetric form implies that the dimension of V is indeed
even.

Once we have a bilinear form Ω we can consider the subspace (the so-called symplectic
complement) WΩ = { ∈ V : Ω(,) = 0,∀ ∈ W}. A subspace W is then called isotropic if
W ⊂WΩ; called coisotropic if WΩ ⊂W; symplectic if W ∩WΩ = {0}; Lagrangian if W =WΩ.

Now consider a smooth manifold X of even dimension. If every tangent space TpX,∀p ∈ X
has a symplectic structure defined by a global closed 2-form ω, then we call the pair (X,ω) a
symplectic manifold. In other words, a symplectic structure on X is a closed non-degenerate
differential 2-form ω. A submanifold Y ⊂ X is called symplectic if ω|Y is non-degenerate, and
it is called Lagrangian if it is the maximum possible set satisfying ω|Y ≡ 0, in which case the
dimension is half of the dimension of X.

There are natural examples of symplectic manifolds like cotangent bundles of manifolds.
A very standard example of a symplectic manifold can be (R2k , ωstd =

∑

d ∧ dy). (The
subspaces Rs×Rs = (1, . . . s,0, . . . ,0, y1, . . . , ys,0, . . . ,0),1 ≤ s ≤ k are symplectic while Rk×
{0} and {0}× Rk are Lagrangian.) This example is crucial by the theorem of G. Darboux [6]
which states that every symplectic manifold locally looks like (R2k , ωstd). Note that symplectic
manifolds are naturally orientable as ωk defines a volume form on X. Thus, when k = 1, every
orientable manifold admits a symplectic structure by a choice of volume form.

From now on, we will be focusing on the case 2k = 4. Let us note that not all (orientable)
4-manifolds are symplectic. For instance S1 × S3 cannot admit a symplectic structure just
because H2(S1×S3) = 0. Symplectic 4-manifolds form a class larger than complex manifolds.
In the next section we will see that 4-dimensional Lefschetz fibrations are indeed topological
counter part of symplectic 4-manifolds.

3.2. Relation to Lefschetz fibrations

Let us first start with introducing theorems relating Lefschetz fibrations to symplectic 4-
manifolds.

Theorem 3.1 (Gompf, 1999, [13, 14]). Let π : X → S2 be a Lefschetz fibration with [F] 6=
0 ∈ H2(X,R). Then there exists a symplectic structure ω on X such that fibers are symplectic
submanifolds.
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The idea of the proof of this theorem is based on the article of W. P. Thurston [30] in
which he gives examples of symplectic but non-Kähler manifolds by constructing a symplectic
structure on certain T2 bundles over T2. Indeed, his idea generalizes to every manifold X2k

which fibers over a symplectic manifold B2k−2 with the property that the fundamental class
of the fiber F is not homologous to zero in H2(X,R). His idea is based on the fact that when
[F] 6= 0 ∈ H2(X,R), one can construct a closed 2-form β which is non-degenerate on the fibers.
By assumption, the base has a symplectic form ωB so one considers ω = β + Kπ∗ωB where
π : X → B is the projection. The form ω then becomes non-degenerate on X for sufficiently
large values of K ∈ R.

In the case of Lefschetz fibration this idea applies. A special care is needed around the
singularities but singularities of Lefschetz fibration have a simple fixed local model. As for the
converse, from symplectic manifolds to Lefschetz fibrations, we have the following important
theorem due to S. K. Donaldson.

Theorem 3.2 (Donaldson,1999, [9]). Let (X,ω) be a compact symplectic manifold with in-
tegral class [ω]. Then for large k ∈ N, X carries a Lefschetz pencil such that the fibers are
symplectic submanifolds representing the Poincaré dual of k[ω]. Thus a blow-up of X carries
a symplectic Lefschetz fibrations over S2.

To give a very rough idea of the proof of the theorem S. K. Donaldson, it is convenient to
look at the construction of E(1) in an other manner that allow us to generalize the construc-
tion. Namely, we interpret homogeneous polynomials of degree 3 as holomorphic sections
of the bundle O(3) → CP2 and follow the construction as it is. (Recall that O(3) is the 3-fold
tensor product of O(1) which is the dual of the canonical line bundle of CP2.)

In a more general setting one considers a very ample line bundle L → X (L being very
ample line bundle implies that there exist enough global sections to set up an embedding
of X into a projective space). Say there exists s0, s1 : X → L with {s = 0} = Y ⊂ X. Then,
consider the following well-defined projection

X \ {Y0 ∩ Y1} → CP1

 → [s0() : s1()].
Generically the intersection Y0 ∩Y1 is transverse and is a discrete set of cardinality say m.

By blowing up at the intersection Y0 ∩ Y1 we can extend this projection to X#mCP2 → CP1

that, hence, provides a Lefschetz fibration over S2 ∼= CP1. In the case of symplectic manifolds,
S. K. Donaldson shows that one can find enough approximately holomorphic sections which
makes the construction of a Lefschetz fibration possible.

It is worth mentioning here that the real analogue of the theorem of S. K. Donaldson is
given by D. Gayet [12]. Namely, he showed that

Theorem 3.3 (Gayet, 2008, [12]). Let (X,ω, cX) be a compact real symplectic manifold (i.e.
c∗
X
(ω) = −ω) with [ω] integral, then a blow-up of X carries a real Lefschetz fibrations over S2

with fibers symplectic submanifolds.
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