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The Hurwitz existence problem for surface branched covers

CARLO PETRONIO

Abstract

To a branched cover ƒ : e →  between closed surfaces one can associate a combinatorial da-
tum given by the topological types of e and , the degree d of ƒ , the number n of branching points
of ƒ , and the n partitions of d given by the local degrees of ƒ at the preimages of the branching
points. This datum must satisfy the Riemann-Hurwitz condition plus some extra ones if either  or
both  and e are non-orientable. A very old question posed by Hurwitz [14] in 1891 asks whether
a combinatorial datum satisfying these necessary conditions is actually realizable (namely, asso-
ciated to some existing ƒ ) or not (in which case it is called exceptional). Or, more generally, to
count the number of realizations of the datum up to a natural equivalence relation. Many partial
answers have been given to the Hurwitz problem over the time, but a complete solution is still
missing. In this short course we will report on ancient and recent results and techniques employed
to attack the question.
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Course no II— The Hurwitz existence problem for surface branched covers

1. Statement of the problem, monodromy,
dessins d’enfant, reduction to the sphere

In the first lecture we will state the problem and illustrate its solution in a vast number of
cases.

1.1. Surface branched covers and the problem

We will denote by
S T g · T P k · P

respectively the sphere, the torus, the connected sum of g copies of T (i.e., the orientable
surface of genus g ¾ 1), the projective plane, and the connected sum of k copies of P (i.e.,
the non-orientable surface of crosscap number k ¾ 1).

A surface branched cover is a continuous function ƒ : e→  where e and  are closed and
connected surfaces and ƒ is locally modeled on maps of the form

(C,0) 3 z 7→ zm ∈ (C,0).

If m > 1 the point corresponding to 0 in the target C is called a branching point, and m
is called the local degree at the point corresponding to 0 in the source C. There is a finite
number n of branching points, and the points themselves are denoted by {}n=1. Setting

• =  \ {}n=1
e• = ƒ−1 (•) ƒ • = ƒ

�

�

e•

one gets a genuine cover
ƒ • : e• → •

of some degree d. The local degrees of ƒ at the points of ƒ−1() form a partition π = [dj]
ℓ
j=1

of d (here square brackets are used to denote an unordered set with repetitions). Setting
en = ℓ1 + . . . + ℓn we have the following necessary conditions:

1. The Riemann-Hurwitz relation holds:

χ
�

e
�

− en = d (χ () − n) ;

2. If  is orientable then e also is;

3. If  is non-orientable but e is then d is even and every partition π of d splits as π′
⊔

π′′
where π′ and π′′ are partitions of d/2;

4. n · d ≡ en (mod 2).

The Riemann-Hurwitz relation translates the multiplicativity relation

χ
�

e•
�

= d · χ (•)

of the Euler characteristic χ under the ordinary cover ƒ •. The second condition is obvious
because a non-orientable e• cannot cover an orientable •. The third condition follows from
the fact that a cover ƒ • : e• → • with orientable e• and non-orientable • factors as ƒ • = p• ◦g•

where p :  →  is the orientation double cover, 
•
= p−1 (•), p• = p

�

�


• and g• : e• → 

•
is

a genuine cover of degree d/2. This induces a branched cover g : e →  such that ƒ = p ◦g,
and π′ and π′′ are the local degrees of g at the preimages of the two points in p−1(). The

condition that n·d and en have the same parity follows from the previous ones if e is orientable
(two distinct arguments apply to an orientable and a non-orientable ), and it will be proved
below for a non-orientable e.

Let us now call candidate branch datum an array of the form
�

e,, d, n;π1, . . . , πn
�
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with e and  closed and connected surfaces, d and n positive integers, and πj a partition of
d for j = 1, . . . , n, such that all the 4 necessary conditions listed above are satisfied. We make
the convention that the partitions π1, . . . , πn after the semicolon are viewed up to reordering
(we might write [π1, . . . , πn] but we will refrain from doing so).

The Hurwitz problem asks which candidate branch data are realizable (namely, associated
to some existing surface branched cover) and which are exceptional (non-realizable).

Example 1.1. We describe here some arrays
�

e,, d, n;π1, . . . , πn
�

with non-orientable 
that satisfy the Riemann-Hurwitz condition but violate some other necessary condition.

• (P,P,6,2; [2,2,1,1], [3,2,1]) satisfies the Riemann-Hurwitz condition because χ(e)−
en = 1 − 7 equals d · (χ() − n) = 6 · (1 − 2) but n · d = 2 · 6 is even and en = 7 is odd, so
the last condition is violated;

• (2P,P,7,3; [3,2,1,1], [3,1,1,1,1], [2,2,1,1,1]) is an array that satisfies the Riemann-
Hurwitz condition because χ(e)− en = 0−14 equals d·(χ()−n) = 7·(1−3) but n·d = 3·7
is odd and en = 14 is even, so the last condition is violated;

• (2T,2P,3,2; [2,1], [2,1]) satisfies the Riemann-Hurwitz condition because χ(e)− en =
−2− 4 equals d · (χ()− n) = 3 · (0− 2) and the last condition because n · d = 2 · 3 and
en = 4 are even, but d = 3 is odd so the first part of the third condition does not hold;

• (S,P,6,2; [4,1,1], [2,1,1,1,1]) satisfies the Riemann-Hurwitz condition because
χ(e) − en = 2 − 8 equals d · (χ() − n) = 6 · (1 − 2) and the last condition because
n ·d = 2 ·6 and en = 8 are even; morever d is even, so the first part of the last condition
holds, but the second part does not, because [4,1,1] does not split as the disjoint
union of two partitions of d/2 = 3.

By our convention, these arrays are not candidate branch data.

Remark 1.2. For orientable  and e, the Hurwitz realizability problem could be rephrased
in the category of Riemann surfaces and in that of algebraic curves. Namely one could ask
whether there exist complex structures on  and e and a holomorphic ƒ : e →  realizing a
given candidate branch datum. Or whether there exist structures of algebraic curve on  and
e and a rational ƒ : e→  realizing the datum. And it is a deep fact that the answer is always
the same whatever category one chooses, either the topological one discussed above, or the
complex one, or the algebraic one.

Remark 1.3. Hurwitz’s original question was not quite whether a given candidate branch da-
tum is realizable. Instead, he asked how many realizations exist, up to a natural equivalence
relation. In explaining this, we slightly extend his viewpoint and we confine ourselves to the
case where e and  are oriented (and not merely orientable). The equivalence of ƒ0 : e → 
and ƒ1 : e→  is always defined in terms of the existence of homeomorphisms eg : e→ e and
g : →  such that ƒ1 ◦ eg = g ◦ ƒ0, and one says that ƒ0 and ƒ1 are:

• strongly equivalent if g can be chosen to be the identity of  (which requires fixing
the branch set {}n=1 in advance);

• weakly equivalent if eg, g can be chosen to be orientation-preserving (which requires
assuming ƒ0, ƒ1 are also orientation-preserving);

• very weakly equivalent if no restriction whatsoever is imposed.

II–4



Course no II— The Hurwitz existence problem for surface branched covers

Figure 1.1: An ordinary cover between surfaces of positive genus.

Denoting by ν(S), ν(W) and ν(V) the number of realizations of a given candidate branch datum
up to strong, weak and very weak equivalence, we have of course that ν(S)

¾ ν(W)
¾ ν(V) and

that the three numbers can only vanish symultaneously. Moreover ν(S) = ν(W) if the array
of partitions π1, . . . , πn in the candidate branch datum contains no repetitions, but all the
possibilities

ν(S) = ν(W) = ν(V) ν(S) > ν(W) = ν(V)

ν(S) = ν(W) > ν(V) ν(S) > ν(W) > ν(V)

occur (see [34] for the easy proof of this fact and related remarks). The number νS was
computed in an exact but very implicit fashion in [22, 23]. See also the more recent [24, 12,
19, 21, 20, 31, 32, 33], to the results of some of which we will quickly allude below.

1.2. Easy instances of the problem

We remind that the problem we are facing is to determine whether there exists a map ƒ : e→
 matching a given branch datum

�

e,, d, n;π1, . . . , πn
�

. Confining ourselves to the case of
orientable e and , we describe here some cases where the solution of the problem is easy
(and always in the affirmative).

For  = S and n ¶ 1 the Riemann-Hurwitz condition only allows (S, S,1,0;∅) which is
realized by the identity. For  = S and n = 2 we must have χ

�

e
�

− en = 0, whence e = S and
en = 2, so the branch datum is (S, S, d,2; [d], [d]) which is realized by the map (z, t) 7→

�

zd, t
�

upon viewing S as the boundary of the cylinder Δ × [0,1] ⊂ C× R, where Δ is the unit disc in
C.

For  = S and n = 3 the problem is already hard (and, as a matter of fact, it is this very
case to which most attention is currently devoted, as we will see below).

For  of positive genus g and n = 0, if e has genus eg the Riemann-Hurwitz condition reads
2
�

1 − eg
�

= d ·2(1− g), namely eg− 1 = d(g− 1). We can then realize the datum as follows. We
embed e in R3 with a line  going through one of its holes, and e invariant under the rotation
of angle 2π/(eg−1) with axis . Similarly, we embed  (in a different copy of R3) around  and
invariand under the rotation of angle 2π/(g − 1) with axis . We then get ƒ as the projection
in the quotient of the action on e of the group of order d = eg−1

g−1 generated by the rotation of
angle 2π/d with axis , as in Fig. 1.1.

For g > 0 and n > 1 the problem is non-trivial, but we will see later in this lecture that it
always has an affirmative solution.
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1.3. Dessins d’enfant

A technique that has been employed with success to face the Hurwitz existence problem
is based on the notion of dessin d’enfant, popularized by Grothendieck [5, 13] but actually
known before, see [17] and the references therein. It applies to candidate branch data of the
form

�

e, S, d,3;π1, π2, π3
�

,

namely with the sphere as base surface and 3 branching points.

Definition 1.4. We call graph in the surface e a subset  of e consisting of a finite number of
points (the vertices) and of a finite number of (possibly closed) simple arcs (the edges) such
that each arc has its ends at two vertices or its only end at a vertex, and two distinct arcs
have disjoint interiors. We call valence of a vertex  the number of edges of which it is one
end plus twice the number of edges of which it is both ends. Namely, the valence of  is the
number of germs of edges incident to . We say that  is bipartite if a black/white colouring
of its vertices is given so that each edge has ends of distinct colours. We call complementary
region of  a component R of e \ U, where U is the interior of a regular neighbourhood N
of  in e. If  is bipartite we place on ∂R coloured vertices by pulling back to ∂R ⊂ ∂N the
vertices of  under the restriction to ∂R of the natural retraction N → . Note that on each
component of ∂R the black and white vertices alternate, so the number of black vertices on
∂R is the same as the number of white vertices, and we call it the length of R. Note that these
definitions are independent of N up to coloured homeomorphism, and that one can actually
see R as the closure of a component of e \  but keeping in mind that this picture can fail to
be an embedding on the boundary, so some vertices can contribute in a multiple fashion to
the length. We call dessin d’enfant on e a bipartite graph on e whose complementary regions
are discs.

Proposition 1.5. A branch datum
�

e, S, d,3;π1, π2, π3
�

is realizable if and only if there exists
in e a dessin d’enfant  such that the valences of its black vertices are the entries of the
partition π1 of d, the valences of its white vertices are the entries of π2, and the lengths of
its complementary regions are the entries of π3.

Proof. Suppose that there exists ƒ : e→ S realizing the datum, with branching points 1, 2, 3
∈ S. In S take the dessin d’enfant 0 given by one edge with black end at 1 and white end
at 2. Note that its complementary region is a disc R0 of length 1 centered at 3. Now set
 = ƒ−1(0) and note that  is a graph by declaring its vertices to be the pull-backs of those
of 0. Pulling back the colours as well we see that  is bipartite, and of course the valences
of its vertices are as described in the statement. If R is a complementary region of  then the
restriction of ƒ to R is a branched cover of R0 with only one branching point at 3. This implies
that R is itself a disc and contains only one preimage of 3. Moreover the restriction R→ R0
of ƒ is modelled on z 7→ zk where k is an entry of π3, and the conclusion on the lengths of the
complementary regions of  easily follows.

The opposite implication is proved along the same lines. If  exists, we first define ƒ on  by
mapping each edge to 0 so to respect the colours. Then we extend ƒ to each complementary
region R (in doing which it is convenient to view R as an abstract disc with embedded interior
and boundary immersed onto a subset of ). �

With reference to the previous proof, if a graph  has black vertices of valences π1 and
white vertices of valences π2, we will say that  matches π1, π2. Note that this notion applies
to any abstract graph with coloured vertices,  need not be embedded in a surface nor
bipartite (we will need this later on).

Example 1.6. Let us consider candidate branch data of the form
�

e, S,7,3; [4,2,1], [5,2], π3
�
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Figure 1.2: The abstract bipartite graphs matching [4,2,1], [5,2] and their embeddings in S
with lenghts of the complementary regions.

noting that, if e has genus eg and π3 has length ℓ, the Riemann-Hurwitz condition reads

2(1 − eg) − (3 + 2 + ℓ) = 7 · (2 − 3) ⇒ eg = 2 − ℓ/2

therefore we can only have e = S and ℓ = 4 or e = T and ℓ = 2. The abstract graphs matching
[4,2,1], [5,2] are the three shown in the top part of Fig. 1.2. With a little attention one can
enumerate all their possible embeddings in S up to homeomorphism of S and compute the
lenghts of the complementary regions, as in the bottom part of Fig. 1.2, concluding that all
the possibilities

[4,1,1,1] [3,2,1,1] [2,2,2,1]

are realized for π3 (each by several different dessins d’enfant). Turning to the torus, we refrain
from enumerating all the embeddings in T of the relevant abstract graphs, and merely show
for each of the possibile π3’s

[6,1] [5,2] [4,3]

one dessin d’enfant in T realizing it. In Fig. 1.3 this is illustrated using a convention that
we will employ throughout: to describe the embedding of a graph  in a surface e different
from S we will present an immersion of  in S, with double points represented as crossings
in a knot diagram. The whole of e is then recovered by individuating the circles that bound
a regular neighbourhood of the immersion of , keeping in mind that crossings do not give
double points of  in e.

1.4. Exceptionality from dessins d’enfant

We now prove the first result showing that the solution to the Hurwitz problem is not always
in the affirmative:

Proposition 1.7. The candidate branch datum (S, S,4,3; [2,2], [2,2], [3,1]) is exceptional.

Proof. A dessin d’enfant matching [2,2], [2,2] is actually a circle, and its only embedding in
S has complementary regions of lengths [2,2], not [3,1]. This is illustrated in Fig. 1.4. �
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Figure 1.3: Top: three dessins d’enfant matching [4,2,1], [5,2] embedded in T. Bottom: com-
putation of the lenghts of the complementary regions.

Figure 1.4: The only dessin d’enfant in S matching [2,2], [2,2].

1.5. The monodromy approach

The following was already known to Hurwitz:

Theorem 1.8. A candidate branch datum
�

e, g · T, d, n;π1, . . . , πn
�

is realizable if and only if
there exist α1, β1, . . . , αg, βg, θ1, . . . , θn ∈Sd such that:

•
g
∏

p=1
[αp, βp] ·

n
∏

=1
θ = id;

• The cycles of θ have lengths π;

• The subgroup of Sd generated by α1, β1, . . . , αg, βg, θ1, . . . , θn acts transitively on
{1, . . . , d}.

Proof. Suppose that ƒ is realizable and let ƒ • : e• → (g · T)• be the associated genuine cover
between punctured surfaces. Fix a basepoint 0 in (g · T)• and note that

π1 ((g · T)•, 0) =

*

1, b1, . . . , g, bg, t1, . . . , tn :
g
∏

p=1

[p, bp] ·
n
∏

=1

t

+

with p, bp, t the homotopy classes of the loops in Fig. 1.5 (denoted by the same letters
for simplicity). Let us label the points in ƒ−1(0) as y1, . . . , yd. Then we have an associated
representation ρ : π1 ((g · T)•, 0)→Sd where ρ(c)(k) = h if the lift of (a loop representing) c
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Figure 1.5: Generators of the fundamental group of an orientable punctured surface.

Figure 1.6: The surface of genus g with n marked points realized as a polygon P with edges
glued in pairs.

that starts at yh ends at yk. Setting αp = ρ(p), βp = ρ(bp), θ = ρ(t) we of course have the
first condition in the statement.

Now let us examine the lifts under ƒ of the disc centered at  and bounded by t. We
know it consists of ℓ discs and that ƒ restricted to the j-th one is modelled on z 7→ zdj , where
π = [dj]

ℓ
j=1. This implies that on the boundary of the j-th disc there will be dj elements of

ƒ−1(0) = {y1, . . . , yd}, which gives a cycle of length dj in θ, and the second condition is
established.

Finally, if we take in e a path ec from yk to yh we have that c = ƒ ◦ ec is a loop at 0 and
ρ(c)(k) = h, whence the last condition.

Now suppose α1, β1, . . . , αg, βg, θ1, . . . , θn ∈ Sd are given and satisfy the conditions. We
cut g · T open as suggested in Fig. 1.6, so g · T is obtained from the (4g + 2n)-polygon P with
boundary

+1 b
+
1 
−
1 b
−
1 · · ·

+
g b
+
g 
−
g b
−
g c
+
1 c
−
1 · · · c

+
n c
−
n

by identifying each +p to −p , each b+p to b−p , and each c+ to c− . Now we take d copies
P1, . . . , Pd of P, with Pq having boundary

+1,qb
+
1,q

−
1,qb

−
1,q · · ·

+
g,qb

+
g,q

−
g,qb

−
g,qc

+
1,qc

−
1,q · · · c

+
n,qc

−
n,q

and define X as the surface obtained from the disjoint union of P1, . . . , Pd by gluing each +p,q
to −p,αp(q), each b+p,q to b−p,βp(q) and each c+,q to c−,θ(q). A map h : X → g · T is defined as the
quotient of the disjoint union of the identities Pq → P, and h is a branched cover realizing a
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Figure 1.7: The non-orientable surface with crosscap number k and n marked points realized
as a polygon P with edges glued in pairs.

branch datum
(X, g · T, d, n;π1, . . . , πn),

but χ(X) = χ
�

e
�

because (X, g ·T, d, n;π1, . . . , πn) satisfies the Riemann-Hurwitz condition and
so does

�

e, g · T, d, n;π1, . . . , πn
�

. Moreover X is connected thanks to the last condition, and it
is orientable, so X = e and the proof is complete. �

The representation ρ in the previous proposition is called the monodromy of ƒ •. Here comes
the non-orientable version of the previous result:

Theorem 1.9. A candidate branch datum
�

e, k · P, d, n;π1, . . . , πn
�

is realizable if and only if
there exist α1, . . . , αk , θ1, . . . , θn ∈Sd such that:

•
k
∏

p=1
α2p ·

n
∏

=1
θ = id;

• The cycles of θ have lengths π;

• The subgroup H of Sd generated by α1,..., αk , θ1,..., θn acts transitively on {1,..., d};

• e is non-orientable if and only there exists h ∈H such that h is the product of an odd
number of αp’s plus some θ’s and h has some fixed point.

Proof. The proof is similar to the previous one, we only spell out the sufficiency part. We cut
k · P open as suggested in Fig. 1.7, so k · P is obtained from the (2k + 2n)-polygon P with
boundary ′1

′′
1 · · ·

′
k
′′
k c
+
1 c
−
1 · · · c

+
n c
−
n by identifying each ′p to ′′p and each c+ to c− . Now we

take d copies P1, . . . , Pd of P, with Pq having boundary ′1,q
′′
1,q · · ·

′
k,q

′′
k,qc

+
1,qc

−
1,q · · · c

+
n,qc

−
n,q

and define X as the surface obtained from the disjoint union of P1, . . . , Pd by gluing each
′p,q to ′′p,αp(q) and each c+,q to c−,θ(q). A map ƒ : X → k · P is defined as the quotient of

the disjoint union of the identities Pq → P, and ƒ is a branched cover realizing a branch
datum (X, k · P, d, n;π1, . . . , πn), but χ(X) = χ

�

e
�

because (X, g · T, d, n;π1, . . . , πn) satisfies the
Riemann-Hurwitz condition and so does

�

e, g · T, d, n;π1, . . . , πn
�

. Moreover X is connected by
the transitivity condition, so to conclude that X = e we must show that X is orientable if
and only if e is. Now one easily sees that X is non-orientable if and only if there exists an
orientation-reversing loop in k · P that lifts to a loop in X. But a loop in k · P is orientation-
reversing if and only if it is the product of an odd number of p’s plus some c’s, and it has a
lift that is a loop if and only if its monodromy has a fixed point, whence the conclusion. �

Theorems 1.8 and 1.9 imply that the realizability of a given candidate branch datum
�

e,, d, n;π1, . . . , πn
�

could be analyzed by computer, by enumerating all the permutations
with prescribed cycle lengths and checking whether the relevant conditions are met. Note
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that two permutations have the same cycle lengths if and only if they are conjugate to each
other. However, conjugacy classes of permutations in Sd rapidly become very vast as d
grows, so this approach is hardly feasible.

1.6. Proof of the last necessary condition

We stated above that for an array
�

e,, d, n;π1, . . . , πn
�

associated to a branched cover ƒ :
e →  with non-orientable e and  one must have n · d ≡ en (mod 2), where en is the sum of
the lengths of π1, . . . , πn, and now we can prove this fact.

Let ƒ have associated permutations α1, . . . , αk , θ1, . . . , θn as in Theorem 1.9. Since the
signature of a cycle of length m is (−1)m−1, the signature of θ is (−1)d−ℓ , and the signature
of θ1 · · ·θn is n · d − en. But θ1 · · ·θn is a product of squares, so it is even, and the conclusion
follows.

1.7. Exceptionality from monodromy

We can now prove using the monodromy approach an extension of what already seen using
dessins d’enfant:

Proposition 1.10. The following candidate branch datum is exceptional:

((n − 3) · T, S,4, n; [2,2], . . . , [2,2], [3,1]) .

Proof. Note that the Riemann-Hurwitz condition reads

2(1 − (n − 3)) − 2n = 4(2 − n)

so it is satisfied. To realize the candidate we should find θ1, θ2, . . . , θn−1 ∈ S4 with cyclic
structures [2,2] such that θ1 · θ2 · · ·θn−1 has cyclic structure [3,1]. However for the prod-
uct of two permutations of cyclic structure [2,2] we can assume that the the first one is
(1,2)(3,4) and the second one is either (1,2)(3,4) or (1,3)(2,4). But then the product is
respectively the identity or (1,4)(2,3), and the conclusion easily follows. �

1.8. Realizability in non-positive Euler characteristic

The following result was proved in [8] after partial achievements in the same direction in [15,
9].

Theorem 1.11. A candidate branch datum
�

e,, d, n;π1, . . . , πn
�

is realizable if χ() ¶ 0 and
e and  are either both orientable or both non-orientable.

We slightly postpone the proof to record the following easy consequence:

Corollary 1.12. A candidate branch datum
�

e,, d, n;π1, . . . , πn
�

is realizable if χ() ¶ 0 and
e is orientable while  is non-orientable.

Proof. Let p : →  be the orientation double cover. By assumption d is even and π = π′
⊔

π′′
where π′ and π′′ are partitions of d/2. Then we have a candidate branch cover

�

e,, d/2,2n;π′1, π
′′
1 , . . . , π

′
n, π

′′
n

�

which is realizable by Theorem 1.11 because e and  are orientable and χ() ¶ 0. Let h : e→
 be a branched cover realizing it, and suppose π′ and π′′ are respectively the local degrees

of h at the preimages of the points ′ and ′′ of . Suppose that p−1(p(′ )) = {′ , 
′′′
 }.

Since  is connected, one easily sees that for F ⊂  finite and y, z 6∈ F there exists a self-
homeomorphism of  fixed on F and mapping y to z. Then there exists a self-homeomorphism
 of  such that (′ ) = 

′
 and (′′ ) = 

′′′
 for all . Therefore we have (p ◦)(′ ) = (p ◦)(

′′
 )

and we conclude by setting ƒ = p ◦ ◦h. �
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We now report on the (elementary) algebraic machinery developed in [8] to prove Theo-
rem 1.11. For η ∈Sd we make the following conventions:

• The number of cycles of η includes those of length 1;

• η is a q-cycle if its cycle decomposition consists of one cycle of length q and d − q
cycles of length 1.

Lemma 1.13. If θ ∈Sd has ℓ cycles and t ∈ N is such ℓ + 2t ¶ d then we can write θ = σ · τ
with σ a d-cycle and τ is an (ℓ + 2t)-cycle.

Proof. Suppose

θ = (1, . . . , 1)(1 + 1, . . . , 2) · · · (ℓ−1 + 1, . . . , ℓ)

with ℓ = d. Choose b1, . . . , b2t ∈ {1, . . . , d} \ {1, . . . , ℓ} arranged in increasing order, and
define

δ = (1, . . . , ℓ, b1, . . . , b2t).

Now note that δ = δ0 · δ1 where

δ0 = (1, . . . , ℓ) δ1 = (b1, . . . , b2t , ℓ).

Moreover

θ · δ0 = (1, . . . , 1)(1 + 1, . . . , 2) · · · (ℓ−1 + 1, . . . , ) · (1, . . . , ℓ)

= (1, . . . , 1, 1 + 1, . . . , 2, 2 + 1, . . .)

= (1, . . . , d).

Now we recall again that ℓ = d and we calculate

θ · δ = θ · δ0 · δ1
= (1, . . . , d) · (b1, . . . , b2t , d)

= (1,2, . . . , b1, b2 + 1, b2 + 2, . . . , b3, b4 + 1, b4 + 2, . . . , b5, . . . ,

b2t−2 + 1, b2t−2 + 2, . . . , b2t−1, b2t + 1, b2t + 2, . . . d,

b1 + 1, b1 + 2 . . . , b2, b3 + 1, b3 + 2, . . . , b4, . . . ,

b2t−1 + 1, b2t−1 + 2, . . . , b2t)

finding that θ · δ is a d-cycle, so we conclude by setting σ = θ · δ and τ = δ−1. �

Proposition 1.14. Every even θ ∈Sd can be written in both the following forms:

• θ = [α1, β1] with α1 a d-cycle;

• θ = α21 · α
2
2 with α1 · α2 a d-cycle.

Proof. If θ has ℓ cycles, since θ is even we have that d− ℓ is even, so we can set t = (d− ℓ)/2
and use the previous lemma to write θ = σ · τ with σ, τ d-cycles.

• Since τ and σ−1 are d-cycles, τ is conjugate to σ−1, so there exists β1 ∈Sd such that
τ = β1 · σ−1 · β−11 . Therefore θ = [σ, β1] and we only need to set α1 = σ;

• Since σ and τ are d-cycles, σ is conjugate to τ, so there exists α1 ∈ Sd such that
σ = α1 · τ · α−11 . Therefore θ = α1 · τ · α−11 · τ = α21 · (α

−1
1 · τ)2 and we only need to set

α2 = α
−1
1 · τ: since α1 · α2 = τ we have the conclusion.

�
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Proof of 1.11. Choose arbitrarily θ ∈ Sd with cycle lengths π, and set θ = θ1 · · ·θn. The
condition n · d ≡ en (mod 2) implies that θ is even.

For orientable  we have  = g · T with g ¾ 1. We apply the first item of the previous
proposition to θ−1 to write θ−1 = [α1, β1] with α1 a d-cycle. Then we conclude by setting
α2 = β2 = . . . = αg = βg = id and invoking Theorem 1.8.

For non-orientable  we have  = k ·P with k ¾ 2. We apply the second item of the previous
proposition to θ−1 to write θ−1 = α21 · α

2
2 with α1 · α2 a d-cycle. Then we conclude by setting

α3 = . . . = αk = id. Invoking Theorem 1.9, we are only left to note that α1 · α2 is a d-cycle, so
there exists m such that α1 · (α1 · α2)m has a fixed point, and the conclusion follows. �

1.9. Reduction to the sphere

The next result is another major achievement of [8]:

Theorem 1.15. A candidate branch datum
�

e,P, d,m;π1, . . . , πn
�

is realizable if e is not orientable.

The proof uses a technology similar to that employed to establish Theorem 1.11. In this
case one has to find α1, θ1, . . . , θn ∈ Sd such that the θ’s have cycles of lengths π, and
α21 · θ1 · · ·θn = id. As opposed to the case already discussed, however, one cannot choose
θ1, . . . , θn randomly in their conjugacy class and then α1. Instead, one has to choose repre-
sentatives in a careful manner using more work on Sd, for which we refer to [8].

Combining Theorems 1.11 and 1.15 we conclude that a candidate branch datum is guar-
anteed to be realizable unless  = S or  = P and e is orientable. But the same argument
showing Corollary 1.12 proves the following:

Proposition 1.16. A candidate branch datum
�

e,P, d, n;π1, . . . , πn
�

with orientable e is realizable if and only if it is possible to split π as π′
⊔

π′′ so that
�

e, S, d/2,2n;π′1, π
′′
1 , . . . , π

′
n, π

′′
n

�

is realizable.

This implies that solving the Hurwitz existence problem for  = S would give the full solu-
tion.

Example 1.17. The array (S,P,20,2; [2, . . . ,2], [6,2,2,2,1, . . . ,1]), with ten 2’s in the first
partition π1 and eight 1’s in the second one π2, is a candidate branch cover because 2− (10+
4+ 8) = 20(1− 2) and π does split as π′

⊔

π′′ with π′ , π
′′
 partitions of 10 for  = 1,2. However

any such splitting lead to a candidate branch datum
�

S, S,10,4; [2, . . . ,2], [2, . . . ,2], π′2, π
′′
2

�

with π′2 containing an entry 6, and an application of Theorem 2.6 below implies that any such
datum is exceptional. Therefore the original datum with  = P is exceptional as well.

1.10. The prime-degree conjecture

We now prove using dessins d’enfant a result also established in [8] using permutations:

Proposition 1.18. If d is a composite integer then there exist exceptional candidate branch
data of the form (S, S, d,3;π1, π2, π3).
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Figure 1.8: A dessin d’enfant matching [1, . . . , ], [b + 1,1, . . . ,1].

Proof. Suppose that d = b with , b > 1, choose q with 0 < q < b and set

π1 = [, . . . , ] π2 = [b + 1,1, . . . ,1] π3 = [q, (b − q)].

Since en = b+ (1+ (b− (b+ 1))) + 2 = b+ 2 the Riemann-Hurwitz condition holds. Suppose
there exists a dessin d’enfant  in S matching π1, π2. Since  must be connected, b of the
b+1 edges leaving the white vertex  of valence b+1 join  to the b black vertices of valence
. The last edge leaving  therefore creates a double connection between  and one black
vertex . For each black vertex  except  there is one edge joining  to , while the other
− 1 edges join  to 1-valent white vertices. For , instead, there are two edges joining  to
 and the other  − 2 joining  to 1-valent white vertices. This implies that  appears as in
Fig. 1.8, with

0 ¶  ¶ b − 1 0 ¶ y ¶  − 2 ′ = b − 1 −  y′ =  − 2 − y.

Therefore  realizes a branch datum with π3 = [z, b − z] with

z = y + 1 +  + ( − 1) = 1 + y + 

(we have counted left to right the white vertices adjacent to the external region). Since
1 + y +  is never a multiple of , the proof is complete. �

This fact (and many more that we will state in the next lectures) motivate the following:

Prime-degree conjecture If d is a prime number then every candidate branch datum
�

e, S, d, n;π1, . . . , πn
�

is realizable.

The next result, whose proof is sketched again in [8], actually implies that proving the
conjecture for n = 3 would imply its validity for all n. This is why in the sequel we will be
mostly concerned with the case n = 3.

Proposition 1.19. Given d, if all the candidate branch data
�

e, S, d, n;π1, . . . , πn
�

are realizable for n = 3 then they are for all n.
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We only provide a vague idea of the argument underlying this result, proceeding by induc-
tion on n ¾ 3 and using the monodromy approach. The base of the induction is the very as-
sumption. For n ¾ 4 we take some

�

e, S, d, n;π1, . . . , πn
�

and randomly choose θn−1, θn ∈Sd

with cycle lengths πn−1, πn, and set θ′n−1 = θn−1 · θn. Suppose that θ′n−1 has cycle lengths
π′n−1. Now if there exists a candidate branch datum of the form

�

e′, S, d, n − 1;π1, . . . , πn−2, π′n−1
�

we can apply the inductive assumption and find θ1, . . . , θn−2 such that θ1, . . . , θn−2, θ′n−1 re-
alize the datum (note that one permutation can always be chosen at will within its conjugacy
class). It readily follows that θ1, . . . , θn−2, θn−1, θn realizes

�

e, S, d, n;π1, . . . , πn
�

. However, it
is not true in general that for randomly chosen θn−1, θn there exists a candidate branch da-
tum as stated. As a matter of fact, to carry out induction one has to first suitably reorder
π1, . . . , πn and then suitably choose θn−1, θn. See [8], and note that in the statement one
could suppose the data are realizable for n = k, with k ¾ 3 a given integer, and conclude that
they are for all n ¾ k.

2. Short partitions, enumeration, decomposability,
very even candidates, checkerboard graphs

We recall that we have reduced to the question whether a candidate branch datum of the
form

�

e, S, d, n;π1, . . . , πn
�

is realizable, and that, in view of the prime-degree conjecture, we
mostly care about the case n = 3.

We begin by reviewing some results where one of the partitions π is “short”. The next
was proved in [36] for e = S and in [8] in general. See also [18] where uniqueness issues are
discussed with the aid of the action on the braid group on the monodromy (a topic we will
not face in these lectures):

Theorem 2.1. If π1 = [d] then any candidate branch datum
�

e, S, d, n;π1, . . . , πn
�

is realizable.

We will give an almost complete proof of this result using a more modern technology in
Lecture 3.

We then turn to branch data with  = S and π1 = [k, d − k] to say that their realizability
was completely classified in the following cases:

• For all e, all n and k = 1 in [8];

• For n = 3, all k and π2 = π3 = [2, . . . ,2], whence e = S, in [8];

• For all e, n = 3 and k = 2 in [29];

• For e = S, all n and all k in [25].

We will discuss some of these results, and particularly those of [25], later in this course.

Remark 2.2.

• A degree-d polynomial ƒ (z) = 0 + 1 · z+ . . .+ d · zd can be viewed as a map from the
complex projective line P1(C) to itself mapping ∞ to ∞. Moreover ƒ−1(∞) = {∞} and ƒ
is a local homeomorphism away from the finitely many points z at which ƒ ′(z) = 0. This
easily implies that ƒ gives a branched cover matching some (S, S, d, n; [d], π2, . . . , πn).
Conversely, Theorem 2.1 and the facts announced in Remark 1.2 imply that every
candidate branch datum of the form (S, S, d, n; [d], π2, . . . , πn) is realized by a polyno-
mial.
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• Similarly, a Laurent polynomial

ƒ (z) = −h · z−h + −h+1 · z−h+1 + . . . + k−1 · zk−1 + k · zk

with −h, k 6= 0 gives ƒ : P1(C) → P1(C) with ƒ−1(∞) = {0,∞} and ƒ is a branched
cover matching some (S, S, k + h, n; [k, h], π2, . . . , πn). And, conversely, by the facts
announced in Remark 1.2, any realizable candidate branch datum of the form

(S, S, d, n; [k, d − k], π2, . . . , πn)

is realized by a Laurent polynomial.

2.1. Special cases

We will mention here without proof (and sometimes somewhat vaguely) some realizability
results that are known for a candidate branch datum

�

e, S, d, n;π1, . . . , πn
�

, and related issues
faced in the literature. Some proofs or sketches of will be provided below.

• If n · d − en ¾ 3(d − 1) then the candidate is realizable [8] except if it is

((n − 3) · T, S,4, n; [2,2], . . . , [2,2], [3,1]) .

• If e = S and there exists r such that ℓ1 + . . . + ℓr = (r − 1)d + 1 then the candidate is
realizable [1]. Note that for r = 1 this reduces to Theorem 2.1.

• If e = S and n ¾ d then the candidate is realizable [1].

• If e = S, all dj are at most 2 and ℓ ¾ d −
p

d/2 for all  then the candidate is realiz-
able [1].

• Some cases with e = S, n = 3 and all π of the form [, . . . , ,1] where analyzed
in [11] and later in [27].

• It was shown in [3] and later rediscovered in [37] and [26] that for e = S, n = 3 and
π3 = [k,1, . . . ,1], setting

 = GCD{dj :  = 1,2, j = 1, . . . , ℓ},

the datum is realizable if and only if k ¶ d/.

• It was shown in [3] that for e 6= S, n = 3 and π3 = [k,1, . . . ,1] the datum is always
realizable.

• The results of [3] were extended in [35] to show that for e = S, any n ¾ 3 and π =
[k,1, . . . ,1] for all  ¾ 3, setting

 = GCD{dj :  = 1,2, j = 1, . . . , ℓ},

the datum is realizable if and only if k ¶ d/ for all  ¾ 3.

• Certain very special data with e = T, namely

(T, S, d,3; [3,5,4, . . . ,4], [4, . . . ,4], [2, . . . ,2])
(T, S, d,3; [2,4,3, . . . ,3], [3, . . . ,3], [3, . . . ,3])

were shown to be exceptional in [16] and then again using totally different techniques
in [7, 10].

• A series of paper by Gonçalves, Zieschang and their collaborators and followers, ini-
tiated by [4], deals with the problem of realizing candidate branch data by indecom-
posable maps ƒ , namely such that no expression ƒ = g ◦h exists with g, h non-trivial
branched covers.
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Figure 2.1: A polygon X with 4(n − 1) edges, half of which are paired to give an n-punctured
sphere, and a spine of X.

• Some attention, starting from [2] has been devoted to the issue of uniqueness for
realizations of simple candidate branch data, namely data such that all π have the
form [2,1, . . . ,1].

2.2. Zheng’s computational approach

We mention here the very interesting results from [38] that have led to a complete computer-
assisted classification of all the realizable and exceptional candidate branch data

�

e, S, d, n;π1, . . . , πn
�

with d ¶ 20.
The idea is that a degree-d branched cover of the sphere with n branch points is obtained

by suitably gluing d copies X1, . . . , Xd of the 4(n − 1)-polygon X shown in Fig. 2.1-left, with
each γ− of each Xq glued to some γ+ of another (or the same) Xq′ . Using the graph contained
in X shown in Fig. 2.1-right one then shows that the cover is determined by a connected graph
with d vertices of valence 2(n − 1) together with some structure that allows to reconstruct
the gluing (we do not spell out this structure here, called fat graph in [38]). The theoretical
facts proved in [38] are then, roughly speaking, as follows:

• The numbers of fat graphs matching specific candidate branch data can be arranged
in a generating function;

• The analysis of this generating function can be reduced to that of one for which the
connectivity assumption is dropped;

• The coefficients of the latter generating function can be expressed in terms of charac-
ters of certain representations of Sd;

• These characters can be computed in terms of a certain polynomial pσ(z) and rational
function qσ(z) associated to each σ ∈Sd;

• These pσ(z) and qσ(z) can be determined by computer for d ¶ 20.

We mention here that, based on his experimental results, Zheng conjectured certain infinite
families of candidate branch data to be exceptional, all of which were later proved to be so
in [29, 30].
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2.3. A sample of counting results

In [31, 32, 33] the number ν(V) of realizations up to very weak equivalence was computed
for the following candidate branch data

(g · T, S,2k,3; [2, . . . ,2], [2h + 1,1,2, . . . ,2], π3)
(g · T, S,2k,3; [2, . . . ,2], [2h + 1,3,2, . . . ,2], π3)
(g · T, S,2k + 1,3; [1,2, . . . ,2], [2h + 1,2, . . . ,2], π3)

for arbitrary k and small values of g and h. For given g, h the value of ν(V) in terms of k
is sometimes easy and sometimes rather intricate. We provide here as examples two cases
belonging to the last of the three families listed above (the most interesting one, since the
degree is odd so it can be a prime).

• For (S, S,2k + 1,3; [1,2, . . . ,2], [5,2, . . . ,2], [p, q, r]) one has

ν(V) =























0 if p = q = r

1 if two of p, q, r but not all three are equal to each other

2 if p, q, r are different from each other and one is > k

3 if p, q, r are different from each other and all are ¶ k;

• For (2T, S,2k+ 1,3; [1,2, . . . ,2], [9,2, . . . ,2], [2k+ 1]) one has ν(V) = 10 for k = 4 and

ν(V) =
k

16
(7k3 − 42k2 + 72k − 37) +

5

8
(2k − 3)

�

k

2

�

otherwise.

2.4. Special families with many 2’s

To give a flavour of how the arguments based on dessins d’enfant go, we will prove now the
following from [29]:

Proposition 2.3. The candidate branch datum

(T, S, d,3; [2, . . . ,2], [5,3,2, . . . ,2], [p, q])

is realizable if and only if p 6= q.

Proof. Let us first check that the Riemann-Hurwitz condition is satisfied. If d = 2k we have
ℓ1 = k, ℓ2 = k− 2 and ℓ3 = 2, so en = 2k, and the condition reads 0− 2k = 2k(2− 3), so it holds.

We now analyze the dessins d’enfant  matching [2, . . . ,2], [5,3,2, . . . ,2]. Ignoring the
vertices of valence 2, that do not contribute to the topology of , we only have the abstract
graphs in Fig. 2.2-top. These graphs embed in T as in Fig. 2.2-center. Now, restoring the
valence-2 vertices, we have the possibilities shown in Fig. 2.2-bottom, where an edge marked
by  ¾ 0 contains  white and  + 1 black valence-2 vertices, and  + y + z +  = k − 4.
Counting the lengths of the complementary regions is a routine matter, showing that these
graphs realize respectively the following π3’s:

[ + 1,2k − ( + 1)] [ + 1,2k − ( + 1)]
[y + z + 2,2k − (y + z + 2)] [ + y + z + 3,2k − ( + y + z + 3)].

This readily implies that [k, k] is not realized while all [p, q] with p < q are. �

Similar arguments lead to the following:

Proposition 2.4. The candidate branch datum

(S, S, d,3; [2, . . . ,2], [5,3,2, . . . ,2], π3)

(with π3 of length 4) is realizable if and only π3 does not have the form [p, p, q, q] or
[p, p, p,3p].
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Figure 2.2: Abstract graphs with two vertices of valences [5,3], their embeddings in T and
their decorations with valence-2 vertices.

Proposition 2.5. The candidate branch datum

(S, S, d,3; [2, . . . ,2], [3,3,2, . . . ,2], π3)

(with π3 of length 3) is realizable if and only if π3 does not contain d/2.

2.5. Exceptionality and realizability from decomposability

To confirm the exceptionality of some families of candidate branch data conjectured to be so
in [38], the following was shown in [29]:

Theorem 2.6. If a candidate branch datum (S, S, d, n;π1, . . . , πn) is realizable and all the
entries of π1 and π2 are even, then π is the union of two partitions of d/2 for all  ¾ 3.

The proof is based on the idea that certain conditions on a candidate branch datum force
a map realizing it, if any, to be the composition of two non-trivial maps. More exactly, Theo-
rem 2.6 readily follows from the following fact fully proved below:

Proposition 2.7. If ƒ : S→ S is a branched cover realizing

(S, S, d, n;π1, . . . , πn)

with all the entries of π1 and π2 even, then ƒ = g ◦h where g : S → S is the map g(z) = z2

realizing (S, S,2,2; [2], [2]) and h : S→ S is a branched cover realizing some
�

S, S, d/2,2n − 2; [d1j/2]
ℓ1
j=1, [d2j/2]

ℓ2
j=1, π

′
3, π

′′
3 , . . . , π

′
n, π

′′
n

�

where π = π′
⊔

π′′ for  ¾ 3.

Before proving Theorem 2.6 we illustrate a consequence that demonstrated quite powerful
in practice. This uses the next result also established in [29]:

Proposition 2.8. If a candidate branch datum (S, S, d, n;π1, . . . , πn) is realizable and there
exists k ¾ 2 such that each entry of π1 and π2 is a multiple of k, then each entry of π is at
most d/k for all  ¾ 3.
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Figure 2.3: A simple path through n − 1 of the branching points.

We do not reproduce here the argument leading to this proposition, we only mention that
it uses the exceptionality of certain candidate branch data (S, S, d, n;π1, . . . , πn) with π1 =
[k,1, . . . ,1] and π = [2,1, . . . ,1] for  ¾ 4, together with a direct argument exploiting the
monodromy approach. But we show how Theorem 2.6 and Proposition 2.8 combine to give
the following:

Corollary 2.9. If a candidate branch datum (S, S, d, n;π1, . . . , πn) is realizable and there
exists k ¾ 2 such that d is multiple of 2k, each entry of π1 is a multiple of k and each entry
of π2 and π3 is even, then each entry of π2 and π3 is at most d/k and each entry of π is at
most d/2k for all  ¾ 4.

Proof. We apply Proposition 2.7 to see that any ƒ realizing the datum is ƒ = g ◦h with g(z) = z2

and h realizing
�

S, S, d/2,2n − 2;π′1, π
′′
1 , [d2j/2]

ℓ2
j=1, [d3j/2]

ℓ3
j=1, π

′
4, π

′′
4 , . . . , π

′
n, π

′′
n

�

with π = π′
⊔

π′′ for  6= 2,3. Now k divides all the entries of π′1 and π′′1 so by Proposition 2.8
we have dj/2 ¶ (d/2)/k for  = 2,3 and dj ≤ (d/2)/k for  ¾ 4. �

Before establishing Proposition 2.7 we state without proof the following result from [29]
also based on the idea of taking compositions of branched covers:

Theorem 2.10. Consider a candidate branch datum
�

e, S, d,3;π1, π2, π3
�

. If there exists
k ¾ 3 such that all the entries of all the π’s are divisible by k then the candidate is realizable.

Note that this result only applies for high genus of e, because en must be small if all the
entries of all π are divisible by k. For instance, it shows the realizability of the following
candidate branch datum:

(3T, S,12,3; [6,3,3], [6,3,3], [6,6]).

2.6. First generalization of dessins d’enfant

The proof of Proposition 2.7 depends on a geometric and an algebraic argument. Here we
illustrate the former. Assuming some ƒ : e → S realizes some candidate branch datum
�

e, S, d, n;π1, . . . , πn
�

with n ¾ 4, we consider in S a simple path e = e1 · · ·en−2 going through
the branching points 1, . . . , n−1 in this order, see Fig. 2.3. Setting  = ƒ−1(e) we see that 
is a graph with vertices and edges labeled  and ep, such that:

• The valences of the vertices labeled  are the entries of π for  = 1 and  = n− 1, and
those of 2π for  = 2, . . . , n − 2;

• Each edge labeled ep has ends at vertices labeled p and p+1;

• Around each vertex labeled  for  = 2, . . . , n − 2 the edges labeled e−1 and e alter-
nate;
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Figure 2.4: How to enumerate the edges e and how to compute the action of θ.

• The complementary regions of  are discs and on the boundary of each of them the
cycle 1, 2, . . . , n−2, n−1, n−2, . . . , 2 repeats a certain number of times, called the
length of the region;

• The lengths of the complementary regions of  are the entries of πn.

Conversely, any such  gives a realization ƒ of the candidate branch datum.

Remark 2.11. If  comes from a given ƒ of course we see that it contains precisely d edges
for each of the labels e1, . . . , en−2. Conversely, if  satisfies the above combinatorial con-
ditions, one sees that the same conclusion holds, either by a direct counting argument or
invoking the fact that  defines a map ƒ .

We will need below an explicit descprition of the monodromy elements θ1, . . . , θn−1 asso-
ciated as in Theorem 1.8 to the map ƒ realizing a branch datum associated to  as above.
The method is as follows (see Fig. 2.4):

• Enumerate the edges with label e1 as e(1)1 , . . . , e(d)1 in some arbitrary fashion;

• Recursively enumerate the edges with label e with  ¾ 2 as e(1) , . . . , e(d) in such a way

that around each vertex labeled  the edge e(p) follows e(p)−1 in a clockwise order;

• Now for  = 1, . . . , n − 2 and k ∈ {1, . . . , d} the value of θ(k) is computed by locating
e(k) and looking at the next e(∗) in a counterclockwise order around the vertex labeled

 of e(k) ; if that e(∗) is e(h) then θ(k) = h; note that for  = 1 we have that e(h) is simply

the next edge after e(k) , while for  = 2, . . . , n − 2 there is one e(∗)−1 in between;

• The value of θn−1(k) is found similarly, by locating e(k)n−2 and finding the next edge

e(∗)n−2 around the end of e(k)n−2 labeled n−1, which is just the next edge regardless of
the label;

• Finally, θn = θ
−1
n−1 · · ·θ

−1
1 .

The justification of this rule is simply given, remembering that the action of θ is obtained by
lifting a circle going aroung . We leave the details to the reader.

2.7. Block decompositions

For the algebraic machinery we develop here, see the references in [29].

Definition 2.12. If k is a divisor of d, we call k-block decomposition of γ ∈Sd a partition

{1, . . . , d} =
d/k
⊔

m=1
Bm

such that each Bm has cardinality k and γ(Bm) = Bbγ(m) with bγ ∈Sd/k.
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Proposition 2.13. A degree-d branched cover ƒ : e →  with monodromy ρ : π1(•) →Sd

can be expressed as g ◦h with h : e → Ω a degree-k and g : Ω →  a degree-(d/k) branched
cover if and only if there exists a common k-block decomposition for all γ in Im(ρ).

Proof. Note first that ρ is only well-defined up to conjugation, because it depends on the
choice of an ordinary point 0 of ƒ as a basepoint for π1(•), and on the numbering y1, . . . , yd
for ƒ−1(0). However, if B1, . . . , Bd/k is a common k-block decomposition for the elements of
Im(ρ) and ρ′ = α−1 · ρ · α with α ∈ Sd, then setting B′m = α−1(Bm) we see that B′1, . . . , B

′
d/k

is a common k-block decomposition for the elements of Im(ρ′). So the existence of such a
decomposition is well-defined.

Suppose now that an expression ƒ = g ◦h exists, let g−1(0) consist of the points z1, . . . , zd/k
and set Bm = { : y ∈ h−1(zm)}. Of course each Bm has cardinality k. Moreover, if γ 7→ bγ is
the monodromy of g, we readily see that ρ(γ)(Bm) = Bbγ(m) and we are done.

Conversely, if a common block decomposition exists for all the elements of Im(ρ), we
can subdivide into blocks of k points not only the fibre ƒ−1(0) of the basepoint, but any
fibre ƒ−1(). The labels of the blocks are only defined up to conjugation, but not the blocks
themselves, so it makes sense to define h : e→ Ω as the map that collapses each block to a
point, and then g : Ω→  as the map such that ƒ = g ◦h, and we are done. �

2.8. Checkerboard graphs

We introduce here a notion we will employ to prove Proposition 2.7 and also later in this
course.

Definition 2.14. A graph  in a surface  is called a checkerboard graph if its complemen-
tary regions are discs that can be coloured black and white so that each edge separates black
from white.

Proposition 2.15. A graph  in the sphere S is a checkerboard graph if and only if its
complementary regions are discs and all its vertices have even valence.

Proof. We proceed by induction on the number m ¾ 1 of vertices of . For m = 1 we have that
 is a bouquet of k ¾ 1 circles and we proceed by induction on k. For k = 1 the conclusion is
obvious, while for k > 1 we select and innermost such circle γ, we delete it to get a bouquet
′, we apply the induction assumption to ′ and we colour the empty disc bounded by γ of
the opposite colour of the complementary disc of ′ in which γ lies.

For m > 1 we note that  must be connected because its complement consists of discs,
so there is an edge e of  with distinct ends. Then we define ′ as the graph obtained from
 by collapsing e to a point, we apply the inductive assumption to ′ and, for the first time,
we use the assumption that the ends of e have even valence to conclude as suggested in
Fig. 2.5 (on the right the picture is not a general one, we make an example). �

Remark 2.16. The previous result fails to be true for surfaces other than the sphere. For
instance, in the torus T there is a bouquet of two circles whose complement is a single disc.

We are eventually ready to conclude the argument giving Theorem 2.6.

Proof of 2.7. To use the above notation, we rearrange the branch datum associated to ƒ
assuming that the even entries are those of π1 and πn−1. Now we associate to ƒ a graph
 with vertices labeled 1, . . . , n−1 and edges labeled e1, . . . , en−2, and we enumerate the
edges labeled e as e(1) , . . . , e(d) , as explained above. By our choice, all the vertices of  have
even valence, so  is a checkerboard graph.

By Proposition 2.13 (and its proof, to be completely honest) it is now enough to prove
that {1, . . . , d} splits into two blocks of d/2 elements such that θ1 and θn−1 switch them and
θ2, . . . , θn−2, θn leave them invariant. To define the blocks we orient all e’s from  to +1
and we declare an integer p ∈ {1, . . . , d} to be black (respectively, white) if the orientation
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Figure 2.5: A graph in the sphere with vertices of even valence is a checkerboard graph.

Figure 2.6: Edge colours are well defined.

Figure 2.7: Action of the θ’s on the black and white edges.

of e(p) is induced by the incident black (respectively, white) complementary region. We are
left to show that:

• This definition is independent of , which is shown in Fig. 2.6;

• The permutations θ1 and θn−1 switch the black and the white blocks while θ2, . . . , θn−2
leave them invariant, which is shown in Fig. 2.7,

• The permutation θn leaves the blocks invariant, which follows from above because
θn = θ

−1
n−1 · · ·θ

−1
1 .

�
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Figure 2.8: The dessin d’enfant matching [3,3], [3,3] and its embeddings in T.

Figure 2.9: A merging as on the left is performed if D1, D2, D3 are distinct discs. One as on
the right if D1 and D2 are distinct but perhaps D3 coincides with one of them.

2.9. More checkerboard graphs

An interesting technique was introduced in [1] and applied to show some realizability and ex-
ceptionality results for candidate branch data with both the base and the candidate covering
surface equal to the sphere S. The method was generalized to any covering surface in [30],
proving for instance the following:

Theorem 2.17. Any candidate branch datum of the form
�

e, S, d,3;π1, π2, [d − 2,2]
�

is realizable, except
(T, S,6,3; [3,3], [3,3], [4,2]).

The fact that (T, S,6,3; [3,3], [3,3], [4,2]) is exceptional is easily seen using dessins
d’enfant: if  matches [3,3], [3,3] then abstractly it is as in Fig. 2.8, where also its only
embeddings in T are shown, and one readily sees that as π3 they realize [5,1] and [3,3].

The constructive part of the previous result relies on the following construction, that we
describe omitting some details. Let a map ƒ realize a candidate branch datum

�

e, S, d, n;π1, . . . , πn
�

,

and arrange 1, . . . , n as the n-th roots of unity on the boundary of unit disc D ⊂ C ⊂ P1(C) =
S. Moreover paint D black and its complementaty disc white. Pull back ∂D through ƒ to get a
checkerboard graph  ⊂ e with vertices marked  having valences equal to the entries of 2π,
and complementary discs each with a cycle of vertices 1, . . . , n on its boundary, positively
arranged for the black discs and negatively for the white ones. Now we start merging together
distinct black discs and distinct white discs, as shown in Fig. 2.9. Note that a merging of discs
is performed at some vertex, and that there is no unique merging strategy: as long as two or
more distinct discs of the same colour are incident to the same vertex, they can be merged
together. While performing this merging, however, we keep track of what we have done by
inserting a tree with the same label as the vertex through which we have done the merging,
as shown in Fig. 2.10. Note that collapsing the tree to a point results in undoing the merging.
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Figure 2.10: Collapsing these trees results in undoing the mergings of Fig. 2.9.

Figure 2.11: Minimal checkerboard graphs on the torus. In both cases the boundary of the
square is not part of the graph.

Doing this as long as possible, we end up with a minimal checkerboard graph, namely one
with just one black and one white disc. Of course for e = S this is just a circle, but for other
e there are other possibilities. For instance for e = T the minimal checkerboard graphs are
those shown in Fig. 2.11.

Example 2.18. Let us consider the candidate branch datum

(S, S,7,4; [2,2,2,1], [4,2,1], [3,3,1], [2,1,1,1,1,1]).

A checkerboard graph associated to a map realizing this datum is shown in Fig. 2.12, where
for simplicity we write  instead of  (and we use light green rather than black). In Fig. 2.13
we show the result of a maximal disc merging for this graph, and in Fig. 2.14, we show the
same picture again in a tidier fashion.

The construction of a checkerboard graph with decorated trees attached to it can actually
be reversed, which gives a result of the following type: a candidate branch datum

�

e, S, d, n;π1, . . . , πn
�

is realizable if and only if there exists on e a minimal checkerboard graph  and a finite family
of trees with labels 1, . . . , n having their valence-0 and valence-1 vertices on , but otherwise
disjoing from  and from each other, satisfying. . . a long list of combinatorial conditions
depending on the π’s. The details of the statement are too complicated to be reproduced
here (see [1] for the case e = S and [30] for the general case). But it is using this result and
an algorithmic machinery to construct minimal checkerboard graphs in e that Theorem 2.17
was established in [30].
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Figure 2.12: A checkerboard graph.

Figure 2.13: A minimal checkerboard graph.

3. Constellations and geometric orbifolds

In this lecture we describe two approaches that have led to major advancements towards the
solution of the Hurwitz existence problem.

3.1. Data with one partition of length 2

We now provide a full statement of the following result from [25] already announced above:

Theorem 3.1. A candidate branch datum (S, S, d, n;π1, . . . , πn) with ℓn = 2 is always realiz-
able for n ¾ 4, while for n = 3 it is if and only if it does not belong to the following list:
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Figure 2.14: The same minimal checkerboard graph as in Fig. 2.13.

• (S, S,12,3; [2, . . . ,2], [3,3,3,1,1,1], [6,6])

• (S, S,2,3; [2, . . . ,2], [2, . . . ,2], [b,2 − b]) with b 6= 

• (S, S, b,3; [, . . . , ], [b + 1,1, . . . ,1], [q, (b − q)])

• (S, S,2,3; [2, . . . ,2], [k, k − 1,1, . . . ,1], [b,2 − b]) with k ¾ 3

• (S, S,2,3; [2, . . . ,2], [k, k,1 . . . ,1], [ − 1,  + 1]) with k ¾ 2

• (S, S,2,3; [2, . . . ,2], [3,1,2, . . . ,2], [, ]).

Exceptionality of the listed items is very easily established using dessins d’enfant (note
that the third one was already discussed in Lecture 1). Realizability of the other candidate
branch data relies on a topological argument that we now explain with some detail.

Remark 3.2. The statement in [25] contains 7 exceptional families, rather than 6, but two
of them actually coincide. More precisely, using the notation of [25] (employed only within
the present remark because incompatible with our current one), the families (4) and (5)

1 = {2, . . . ,2},2 = {1, . . . ,1, d, d},3 = {2d − 3, n − 2d + 3} d ¾ 3
1 = {2, . . . ,2},2 = {1, . . . ,1, d, d},3 = {2d − 1, n − 2d + 1} d ¾ 3

are the same, because the Riemann-Hurwitz condition reads

2 −
�n

2
+ (2 + n − 2d) + 2

�

= n(2 − 3) ⇒ n = 4d − 4

therefore n − 2d + 3 = 2d − 1 and n − 2d + 1 = 2d − 3, whence

{2d − 3,2d − 1} =
§n

2
− 1,

n

2
+ 1

ª

which leads to the expression we have used in our penultimate item above.
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Figure 3.1: An (n − 1)-star.

3.2. Constellations

Let us call (n − 1)-star a planar graph as shown in Fig. 3.1, namely one consisting of n − 1
edges with one common unlabeled end (named the centre of the star) and distinct other ends
labeled 1, . . . , n− 1, arranged around the centre according to the orientation of the plane. We
then term (n − 1)-constellation in e a graph  ⊂ e consisting of some number of stars such
that:

• Any two stars share at most some vertices with equal labels;

• The vertices labeled 1, . . . , n− 1 appear positively arranged around the centre of each
star according to the orientation of e;

• The complementary regions of  are discs.

Note that around the boundary of each complementary region R we see the labels 1, . . . , n−1
negatively arranged and appearing a certain number p of times, called the length of R.

To a map ƒ : e→ S realizing some candidate branch datum
�

e, S, d, n;π1, . . . , πn
�

we can associate a constellation  defined as the pull-back through ƒ of the star in Fig. 3.1 not
containing the branching point n and with the vertices labeled 1, . . . , n− 1 at the branching
points 1, . . . , n−1. Then  contains d stars, the set of valences of its vertices labeled 
(denoted henceforth by π()) is π, and the set of lengths of the complementary discs of
 (denoted henceforth by πn()) is πn. Moreover, this construction can be reversed, so the
existence of a constellation matching a candidate branch datum implies that the latter is
realizable.

Example 3.3. In Fig. 3.2 we show a 4-constellation in the sphere, consisting of 10 stars.
Counting the valences of the vertices labeled 1,2,3,4 and the lengths of the complementary
regions we see that the constellation realizes

(S, S,10,5; [2,2,2,1,1,1,1], [3,3,1,1,1,1], [4,3,1,1,1],
[4,1,1,1,1,1,1], [3,2,1,1,1,1,1]).

3.3. The idea underlying Pakovich’s argument

The proof of Theorem 3.1 is too long to be reproduced here, but we will explain the idea it is
based on. To do so, we introduce the following notation: for an array π of positive integers,
we denote by π the same array π with all 1’s removed. The argument of [25] is in three steps:
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Figure 3.2: A constellation.

Step 1: Show that to realize the given branch datum (S, S, n, d;π1, . . . , πn) with πn = [s, d− s]
it is enough to construct an (n − 1)-constellation  with:

• π() = π for  = 1, . . . , n − 1;

• πn() containing s.

This means that in constructing  we do not need to count its valence-1 vertices and the
number of stars it consists of.

Step 2: Suppose first that s is “small” compared to the total length of π1, . . . , πn−1 and con-
struct  as required in two passages: first define π′ as an array of 2’s of the same length
as π, and constuct  with π() = π′ for  = 1, . . . , n − 1 and πn() containing s as a circle
with interior of length s, no centres of stars in the interior but some branches outside, as
suggested in Fig. 3.3. Since all the 2’s in π() are incident to the outside of the circle one
can now modify  by adding stars to the outside until π() = π for  = 1, . . . , n − 1 and πn()
still contains s.

Step 3: Given a constellation  as above with π() = π for  = 1, . . . , n−1 and πn() containing
s, we can increase s without affecting the π()’s by reflecting some of the outer branches
with respect to the circle, from the outside to the inside. For instance in Fig. 3.4 we show a
reflection that increases s by 3 (but in the same situation we could increase it by 1 or by 4).
The conclusion of the proof is then obtained by showing that the flexibility in the choice of the
branches to reflect is enough to realize all the values of s. This is based on some numerical
estimates on the lengths of the π’s, and the upshot is that for n ¾ 4 a sufficient flexibility is
always guaranteed, while for n = 3 some exceptions arise.

We will not provide all the details for Steps 2 and 3, but we will for Step 1, and we will
actually consider the general case of a candidate branch datum

�

e, S, d, n;π1, . . . , πn
�

with
arbitrary e. To this end denote by g the genus of e and we define m as the length of π and
 as ℓ − m. We further assume that entries of π are arranged non-increasingly, so π is π
followed by  repetitions of 1.
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Figure 3.3: A circle with branches outside.

Figure 3.4: Reflection of a branch.

Proposition 3.4. If ℓn = 2 then

n−1
∑

=2

m
∑

j=1

(dj − 2) = 1 +m1 − (m2 + . . . +mn−1) + 2g.

Corollary 3.5. A candidate branch datum
�

e, S, d, n;π1, . . . , πn
�

with e of genus g and πn =
[s, d − s] is determined by g, n, π1, . . . , πn−1, s.
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Proof. π1, . . . , πn−1 determine m1, . . . ,mn−1, so by the previous result 1 is determined, and
hence also

d =
m1
∑

j=1

d1j + 1

and whence all

 = d −
m
∑

j=1

dj.

�

Proof of 3.4. The Riemann-Hurwitz condition reads

2(1 − g) − (ℓ1 + . . . + ℓn−1 + 2) = d(2 − n),

namely ℓ1 + . . . + ℓn−1 = d(n − 2) − 2g. Now we compute
n−1
∑

=2

m
∑

j=1

(dj − 2) =
n−1
∑

=1

m
∑

j=1

(dj − 2) −
m1
∑

j=1

(d1j − 2)

=
n−1
∑

=1

m
∑

j=1

(dj − 2) + 2m1 −
m1
∑

j=1

d1j.

We next evaluate another sum in two different ways:

n−1
∑

=1

ℓ
∑

j=1

(dj − 2) =
n−1
∑

=1

m
∑

j=1

(dj − 2) +
n−1
∑

=1

ℓ
∑

j=m+1

(−1)

=
n−1
∑

=1

m
∑

j=1

(dj − 2) −
n−1
∑

=1



n−1
∑

=1

ℓ
∑

j=1

(dj − 2) =
n−1
∑

=1

ℓ
∑

j=1

dj − 2
n−1
∑

=1

ℓ

= (n − 1)d − 2(d(n − 2) − 2g)

where we have used the Riemann-Hurwitz condition in the last passage. This shows, after
easy computations, that

n−1
∑

=1

m
∑

j=1

(dj − 2) = d(3 − n) + 4g +
n−1
∑

=1

.

Substituting this in the first formula above we get
n−1
∑

=2

m
∑

j=1

(dj − 2)

= d(3 − n) + 4g +
n−1
∑

=1

 + 2m1 −
m1
∑

j=1

d1j

= d(3 − n) + 4g +
n−1
∑

=1

( +m) −
n−1
∑

=1

m + 2m1 − (d − 1)

= d(3 − n) + 4g + (d(n − 2) − 2g) −
n−1
∑

=1

m + 2m1 − (d − 1)

where we have used the Riemann-Hurwitz condition again. And now a direct calculation
shows that the last expression is

1 +m1 − (m2 + . . . +mn−1) + 2g

as desired. �
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Figure 3.5: Abstract graphs with 4 trivalent vertices.

Figure 3.6: Embeddings in the torus.

3.4. Proofs by constellations

As already mentioned, the proof of Theorem 3.1 in [25] is rather complicated and long, so
instead of presenting it we will provide other applications of the approach to the Hurwitz
existence problem via constellations.

To begin, we give an alternative proof of Proposition 1.10 concerning the exceptionality of
((n − 3) · T, S,4, n; [2,2], . . . , [2,2], [3,1]) . A constellation realizing such a datum would be a
graph  in the surface of genus g = n − 3 with only 4 actual vertices of valence n − 1, edges
labeled 1, . . . , n − 1 (two edges for each label), the labels 1, . . . , n − 1 positively arranged
around each vertex, and two complementary regions incident respectively to n − 1 and to
3(n − 1) vertices (with multiplicity).

We prove that no such  exists for n = 4 (and g = 1), leaving the general case to the reader.
The abstract graphs with 4 trivalent vertices are those in Fig. 3.5 ( and  are those in which
the only maximal tree is a segment, , V and V are those in which there is a maximal tree
with a trivalent vertex). Their only relevant embeddings in T are those in Fig. 3.6 (namely, 
and  do not embed in T so that the complement consists of discs, V embeds in one way
only, and  and V embed in two ways —not three, as one might think: the two embeddings
V′ are the same). Now, one sees that the numbers of vertices to which the complementary
regions are incident are [10,2] for ′, [6,6] for ′′, [11,1] for V′, [9,3] for V′ and [8,4]
for V′′. And, finally, Fig. 3.7 proves that for ′′ a choice of the labels as required is possible
(but this constellation realizes π4 = [2,2], not [3,1]) while it is impossible for V′: after an
acceptable choice is made for the three bottom vertices, the ordering around the top vertex
is not the good one. The argument is complete.

We now turn to Theorem 2.1 according to which any candidate branch datum
�

e, S, d, n;π1, . . . , πn
�
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Figure 3.7: Labels for the edges.

is realizable if π1 = [d].

Case 1: e = S, n = 3. In this case we can use dessins d’enfant and proceed by induction on
d ¾ 3. For the base step we have the candidate (S, S,3,3; [3], [2,1], [2,1]) which is realized
by the only dessin matching [2,1], [2,1] (a segment with two internal vertices). For the
inductive step, note that the Riemann-Hurwitz condition reads 2 − (1 + ℓ2 + ℓ3) = d(2 − 3),
namely ℓ2 + ℓ3 = d+ 1. We claim that up to change of notation π3 contains a 1. Otherwise we
would have dj ¾ 2 for  = 2,3 and all j, so ℓ2, ℓ3 ¶ d/2, a contradiction. Assuming d21 > 1 and
d31 = 1 we can inductively realize

(S, S, d − 1,3; [d − 1], [d21 − 1, d22, . . . , d2ℓ2 ], [d32, . . . , d3ℓ3 ])

by a dessin d’enfant matching [d21 − 1, d22, . . . , d2ℓ2 ], [d32, . . . , d3ℓ3 ], and we get the conclu-
sion by attaching to this dessin a segment with a white end to the black vertex corresponding
to d21 − 1.

Case 2: e = S, n ¾ 4. The argument is very similar using constellations. To simplify the
base of the induction we remove here the assumption that each π should be different from
[1, . . . ,1], so we can start with d = 1, all π = [1] and the identity. For the inductive step, we
write the Riemann-Hurwitz condition ℓ2+ . . .+ ℓn = (n− 2)d+ 1 and claim that up to changing
notation π3, . . . , πn contain a 1. Otherwise, π2, π3 do not contain a 1, so ℓ2, ℓ3 ¶ d/2, whence

(n − 2)d + 1 = ℓ2 + . . . + ℓn ¶ d/2 + d/2 + (n − 3)d = (n − 2)d,

a contradiction. So we can assume d21 > 1 (otherwise we induct on n) and d31 = . . . = dn1 = 1
and we apply the induction assumption to

(S, S, d − 1, n; [d − 1], [d21 − 1, d22, . . . , d2ℓ2 ], [d32, . . . , d3ℓ3 ], . . . , [dn2, . . . , dnℓn ])

finding a constellation with vertices having labels 2, . . . , n. We then attach a star to the vertex
labeled 2 corresponding to d21 − 1 (and all other vertices 3, . . . , n free) and we are done.

Case 3: e = g · T, g ¾ 1, n = 3. To face this case we define the extra valence of the given
candidate branch datum as the number

e =
3
∑

=2

∑

∈π

( − 2)

and we claim that e ¾ 4g − 2. In fact we have 2(1 − g) − (1 + ℓ2 + ℓ3) = d(2 − 3) by the
Riemann-Hurwitz condition, whence ℓ2 + ℓ3 = d − 2g+ 1. Joining π2 and π3 we get a partition
η of 2d of length ℓ2 + ℓ3. Note that e =

∑

∈η(− 2). If η contains both a 1 and an entry  > 2
we can reduce the value of e without changing the length of η by replacing 1 by 2 and  by
 − 1. Eventually we get to some η′ such that one of the following holds:

•  ¶ 2 for all  ∈ η′; then ℓ2 + ℓ3 ¾ d which contradicts the equality ℓ2 + ℓ3 = d − 2g + 1;
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Figure 3.8: A dessin d’enfant with 2g + 1 edges in the surface of genus g. Its complement is
a single disc.

Figure 3.9: Dessins d’enfant on the torus; in each of these graphs k white and k black vertices
should be alternately added on any edge with black and white ends.

•  ¾ 2 for all  ∈ η′; then

e(η′) =
∑

∈η
( − 2) =

∑

∈η
 − 2(ℓ2 + ℓ3) = 2d − 2(d − 2g + 1) = 4g − 2.

Our claim is proved.

We now note that d− 2g+ 1 = ℓ2 + ℓ3 ¾ 2, whence d ¾ 2g+ 1, and we proceed by induction
on d, with fixed g ≥ 1 and n = 3, so we use dessins d’enfant. For d = 2g + 1 the candidate is

(g · T, S,2g + 1,3; [2g + 1], [2g + 1], [2g + 1])

and it is realized by the dessin in Fig. 3.8. For d > 2g+1 we proceed by induction on e ¾ 4g−2.
The base step e = 4g − 2 is actually here much harder than the inductive step. We first note
that the above argument proving that e ¾ 4g − 2 implies that for e = 4g − 2 all the entries of
π2 and π3 are at least 2. So for instance for g = 1 we only have for π1, π2, π3 the possibilities

[4 + 2k], [4,2, . . . ,2], [2, . . . ,2]
[6 + 2k], [3,3,2, . . . ,2], [2, . . . ,2]
[3 + 2k], [3,2, . . . ,2], [3,2, . . . ,2]

with k ¾ 0. These partitions are realized by the graphs shown in Fig. 3.9. For general g, we
first show that any triple of partitions of the form

[d], [4g − p,2, . . . ,2], [2 + p,2, . . . ,2]
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Figure 3.10: Dessins d’enfant on the genus-g surface; again, in each of these graphs k white
and k black vertices should be alternately added on any edge with black and white ends.

Figure 3.11: Transfer of valence.

can be realized. For p = 0,1,2,3 these triples can be described as

[4g + 2k], [4g,2, . . . ,2], [2, . . . ,2]

[4g − 1 + 2k], [4g − 1,2, . . . ,2], [3,2, . . . ,2]

[4g − 2 + 2k], [4g − 2,2, . . . ,2], [4,2, . . . ,2]

[4g − 3 + 2k], [4g − 3,2, . . . ,2], [5,2, . . . ,2]

for k ¾ 0, and Fig. 3.10 shows dessins d’enfant realizing them and suggests how to operate
for arbitrary p. To conclude the base of the induction we only need to remark that any triple
of partitions with e = 4g − 2 can be reached from one of the form [d], [4g − p,2, . . . ,2], [2 +
p,2, . . . ,2] by the black valence transfer move of Fig. 3.11, and its white analogue. Moving
to the inductive step, suppose that e > 4g− 2. Then e ¾ 3, so the union of π2 and π3 contains
at least an entry greater than or equal to 3. But the above argument showing the inequality
e ¾ 4g − 2 implies that the union of π2 and π3 also contains at least an entry equal to 1.
Now we have two cases: either up to changing notation we have d21 > 2 and d31 = 1, or
π2 = [2, . . . ,2]. In the first case we realize

(g · T, S, d − 1,3; [d − 1], [d21 − 1, d22, . . . , d2ℓ2 ], [d32, . . . , d3ℓ3 ])

by a dessin d’enfant  matching the last two partitions and then we attach an edge with a
white end to the black vertex of  corresponding to d21−1, getting a dessin d’enfant realizing
the relevant candidate branch datum. In the second case the candidate branch datum to
realize is

(g · T, S,2k,3; [2k], [2, . . . ,2], π3)

for some k, with ℓ3 = 1 + k − 2g. Finding a corresponding dessin d’enfant is now an easy
exercise: one first deals with the case

π3 = [k + 2g,1, . . . ,1],

which is done with an explicit construction similar to that of Fig. 3.8, and then one uses moves
similar to that in Fig. 3.11 to do the general case.
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To prove Theorem 2.1 in the general case g ¾ 1 and n ¾ 4 one should now combine the
above induction argument on the extra valence with the use of constellations. We leave this
to the reader.

3.5. Geometric 2-orbifolds

As a last topic, we describe here a geometric approach to the Hurwitz existence problem. To
do so we start with some very general notions.

We will call n-orbifold a compact Hausdorff topological space X covered by open charts U
with homeomorphisms φ : V/ → U, where V is an open subset of Rn and  is a finite group
of self-diffeomorphisms of V. The charts should be compatible in the sense that two of them
should intersect in a subchart of both, where a subchart of φ : V/ → U is φ′ : V′/′ → U′

where V′ ⊂ V and ′ = {γ ∈  : γ(V′) = V′} = {γ ∈  : γ(V′) ∩ V′ 6= ∅}. The formal definition
as usual requires the choice of a maximal atlas of compatible charts.

For an orbifold X and  ∈ X we can define the point group  as the minimal  such
that there exists a chart φ : V/ → U with  ∈ U. From now on we will confine ourselves to
locally orientable orbifolds, namely such that all the groups  as above consist of orientation-
preserving diffeomorphisms. And in this case it is not difficult to see that  can be identified
with a subgroup of SO(n). For n = 2 this implies that each  is some cyclic group Cp gener-
ated by the rotation of angle 2π/p around 0 in R2, therefore a (locally orientable) 2-orbifold
X is topologically a surface , except that at finitely many points  ∈  the point group is
Cp with some p > 1, and the differentiable structure at  is a singular one. Any such point 
will be called a cone point of order p, and globally X will be denoted by (p1, . . . , pk) if it has
cone points of orders p1, . . . , pk.

We define the singular locus of an orbifold X as the set

Sing(X) = { ∈ X :  6= {1}}.

Note that X\Sing(X) is a manifold. We then define a Riemannian metric μ on X as a Riemann-
ian metric on X \ Sing(X) such that for any chart φ : V/→ U there is a Riemannian metric ν
on V where:

•  acts isometrically with respect to ν;

• for any y ∈ V with  = φ(y) non-singular, φ is an isometry between ν(y) and μ().

It is a fact that an orbifold X admits a cell decomposition C such that for any c ∈ C there is
a group c with  ∼= c for all  ∈ C. We can now define the orbifold Euler characteristic of X
as

χorb(X) =
∑

c∈C

(−1)dim(c)

#(c)
.

For a 2-dimensional X = (p1, . . . , pk) we have

χorb(X) =
∑

c∈C, dim(c)=2
1 −

∑

c∈C, dim(c)=1
1 +

∑

p¾1

∑

c∈C, dim(c)=0, order(c)=p

1

p

=

 

∑

c∈C, dim(c)=2
1 −

∑

c∈C, dim(c)=1
1 +

∑

c∈C, dim(c)=0
1

!

−
∑

p¾2

∑

c∈C, dim(c)=0, order(c)=p

�

1 −
1

p

�

= χ() −
k
∑

j=1

�

1 −
1

pj

�

.
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We can now prove an orbifold version of the Gauss-Bonnet theorem. To this end note that
the curvature κ and the area form A of a Riemannian metric on a 2-orbifold X are defined
outside a finite set, so the integral of κ over X with respect to A is well-defined:

Theorem 3.6.
∫

X
κdA = 2π · χorb(X).

Proof. The infinitesimal version of the Gauss-Bonnet theorem says that for a geodesic triangle
T with inner angles α, β, γ one has

∫

T
κdA = α + β + γ − π.

We can now take a triangulation T of X such that the set T (0) of the vertices of T contains
Sing(X), and T (1), the set of the edges of T , consists of geodesic segments. Note that for
 ∈ T (0) the sum of the angles at  of the triangles in T (2) containing  is 2π/p if  has order
p (in particular, it is 2π for non-singular ). We then have

∫

X
κdA =

∑

T∈T (2)

∫

T
κdA

= −π ·
∑

T∈T (2)
1 +

∑

∈T (0)

2π

order()

= 2π ·

 

∑

T∈T (2)
1 −

3

2

∑

T∈T (2)
1 +

∑

∈T (0)

1

order()

!

= 2π · χorb(X)

because 3#(T (2)) = 2#(T (1)). �

If X2 is one of the constant curvature model spaces S2, E2 or H2 we will say that a 2-
orbifold X has a geometric structure of, respectively, sperical, Euclidean or hyperbolic type if
it is endowed with a Riemannian metric locally modeled on the quotient of a disc in X2 under
the action of an isometric rotation of order 2π/p around its centre. Theorem 3.6 implies that
X can be spherical only if χorb(X) > 0, it can be elliptic only if χorb(X) = 0, and it can be
hyperbolic only if χorb(X) < 0. Moreover the following is easily established:

Proposition 3.7. Let X be a 2-orbifold with an underlying surface which is compact, con-
nected, orientable and without boundary.

• χorb(X) > 0 if and only if X is one of the following:

S S(p) S(p, q) S(2,2, p) S(2,3,3) S(2,3,4) S(2,3,5);

• χorb(X) = 0 if and only if X is one of the following:

T S(2,4,4) S(2,3,6) S(3,3,3) S(2,2,2,2).

3.6. Orbifold covers

An orbifold cover ƒ : eX → X is a map such that each  ∈ X has an open neighbourhood U
with ƒ−1(U) a disjoint union of open sets eU for which there exist charts eφ : V/e → eU and
φ : V/ → U where e <  and ƒ ◦ eφ = φ ◦π, for π : V/e → V/ the natural projection. For
locally orientable 2-orbifolds, an orbifold cover is simply a map locally modeled on the natural
projection Δ/C

ep → Δ/Cp, where Δ is the unit disc in C and ep is a divisor of p.
In any dimension the following generalizations of what is known for ordinary covers hold:

• The orbifold Euler characteristic is multiplicative under orbifold covers;
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• Every orbifold X has an orbifold universal cover π : Y → X, namely one such that for
any orbifold cover ƒ : eX→ X there exixts an orbifold cover g : Y → eX with π = ƒ ◦g.

We will say that an orbifold X is good if it is orbifold covered by manifold (or, equivalently,
if its orbifold universal cover is a manifold), and bad if it is not good. The following is due to
Thurston:

Theorem 3.8. Let X be a 2-orbifold with an underlying surface which is compact, connected,
orientable and without boundary. Then X is bad if and only if it is S(p) with p > 1 or S(p, q)
with p > q > 1. If X is good then it is geometric, and more precisely it can be realized globally
as a quotient X2/, with  a discrete group of isometries of some X2.

Note that by Theorem 3.6 the type of geometry of X is dictated by its orbifold Euler char-
acteristic.

3.7. Candidate orbifold covers and the spherical case

We can now spell out the connection of the theory of 2-orbifolds with the Hurwitz existence
problem. For a candidate branch datum

�

e,, d, n;π1, . . . , πn
�

we define p as the least common multiple of the entries of π and qj = p/dj. Then one
sees quite easily that the candidate is realizable if and only if there exists an orbifold cover
e({qj})

d:1−→({p}) with each cone point of order qj mapped to the cone point of order p.
Note that the original candidate branch datum is determined by e({qj}), ({p}), d and the
instructions on which qj should be mapped to which p.

We now introduce the symbol e({qj})
d:1
- - ->({p}), termed candidate orbifold cover, to

denote a possibly non-existent orbifold cover as required. Of course we restrict our attention

to candidate orbifold covers eX
d:1
- - ->X with X having base surface S and e having orientable

base surface, and satisfying χorb
�

eX
�

= d · χorb(X), which coincides with the Riemann-Hurwitz
condition for the associated candidate branch datum.

In [27, 28] we have analyzed the realizability of candidate orbifold covers eX
d:1
- - ->X using

the geometry of X and eX, and we have deduced the realizability or exceptionality of sev-
eral families of candidate branch data. Note that X and eX have concordant orbifold Euler
characteristics, whence almost always the same geometry, except if they both have positive
orbifold Euler characteristics and one of them is bad (or both).

For the case of positive orbifold Euler characteristic the following proves crucial:

Proposition 3.9. A candidate orbifold cover eX
d:1
- - ->X with good X and bad eX is exceptional.

Proof. Since X is good, the orbifold universal cover of X is a manifold Y. If the candidate is
realized by some map eX→ X then Y covers eX as well, but eX is bad. �

The following is shown in [27]:

Theorem 3.10. A candidate orbifold cover eX
d:1
- - ->X with positive χorb is realizable unless X

is good and eX is bad.

The argument underlying this result follows these steps:

• Enumeration of all the possible candidate orbifold covers eX
d:1
- - ->X with χorb > 0;

• Verification that X is never bad for any of them;

• For good eX, description of the spherical structures eX = S2/e and X = S2/, and
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• Verification that e can be realised as a subgroup of .

The exceptional candidate branch data corresponding to the exceptional candidate orb-
ifold covers of the previous statement are as follows:

• The infinite series

(S, S,2k,3; [2, . . . ,2], [2, . . . ,2], [, b])

for  6= b, for which the associated candidate orbifold covers is one of the following:

S(p)
2k:1
- - ->S(2,2, r) p > 1 S(p, q)

2k:1
- - ->S(2,2, r) p > q > 1;

note that the exceptionality of the candidate branch data described is easily proved
using dessins d’enfant;

• 11 sporadic cases, among which for instance

(S, S,16,3; [2, . . . ,2], [3, . . . ,3,1], [5,5,5,1])

with associated S(3,5)
16:1
- - ->S(2,3,5), and

(S, S,45,3; [2, . . . ,2,1], [3, . . . ,3], [5, . . . ,5])

with associated S(2)
45:1
- - ->S(2,3,5).

3.8. The Euclidean case

The analysis of the candidate orbifold covers with χorb = 0 has led to the most interesting
results, and we explain here the ideas it is based on.

Proposition 3.11. If ƒ : eX
d:1−→X is an orbifold cover with

χorb(X) = χorb( eX) = 0

then there exist discrete groups , e of isometries of E2 such that:

• X can be identified to the quotient E2/ with projection c : E2 → X;

• eX can be identified to the quotient E2/e with projection ec : E2 → eX;

• X and eX have the same area with respect to the Euclidean structures thus defined;

• There exists an affine map eƒ (z) = λ · z + μ from E2 (viewed as C) to itself such that
c ◦eƒ = ƒ ◦ ec and d = |λ|2.

Proof. Choose any Euclidean structure on X given by a group  of isometries and a projection
c : E2 → X. Pull-back this structure to eX via ƒ , getting some isometry group  and projection
c : E2 → eX. Then there exists ƒ : E2 → E2 such that c ◦ ƒ = ƒ ◦ c. Now ƒ is an orbifold cover, so it
is a genuine cover and actually a homeomorphism. In addition it is a local isometry, whence
a global isometry and hence an affine map. Now the area of eX with respect to c is d times
the area of X with respect to c. Therefore we obtain equal area by rescaling the metric on eX
by a factor 1/

p
d. If ec is the corresponding projection we still have that there exists an affine

eƒ (z) = λ · z + μ with c ◦eƒ = ƒ ◦ ec, but now eƒ is
p
d times an isometry, whence |λ|2 = d. �

Corollary 3.12. With notation as in the previous proposition,  and e have maximal sublat-
tices Λ and eΛ, and λ · eΛ ⊂ Λ.
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To analyze the realizability of all eX
d:1
- - ->X with χorb = 0, the first step is to list all the

possibilities for the cone points {qj} and {p} with qj a divisor of p. Excluding the case
eX = T, which is always realizable, there are 7 cases for eX and X, and for each of them several
possibilities for which qj should be mapped to which p. For instance for eX = X = S(2,4,4) we
have the following list:

1. 2 7→ 2, 4′ 7→ 4′, 4′′ 7→ 4′′ with associated candidate branch datum
(S, S,4k + 1,3; [2 . . . ,2,1], [4, . . . ,4,1], [4, . . . ,4,1]);

2. 2 7→ 2, 4′,4′′ 7→ 4′ with no associated candidate branch datum;

3. 2 7→ 4′, 4′,4′′ 7→ 4′′ with associated candidate branch datum
(S, S,4k + 2,3; [2 . . . ,2], [4, . . . ,4,2], [4, . . . ,4,1,1]);

4. 2,4′ 7→ 4′, 4′′ 7→ 4′′ with no associated candidate branch datum;

5. 2,4′,4′′ 7→ 4′ with associated candidate branch datum
(S, S,4k + 4,3; [2 . . . ,2], [4, . . . ,4], [4, . . . ,4,2,1,1]).

For the first case, the result we get is the following:

Theorem 3.13. (S, S, d,3; [2 . . . ,2,1], [4, . . . ,4,1], [4, . . . ,4,1]) is realizable if and only if
d = 2 + y2 with , y ∈ Z of different parity.

Proof. Let ƒ realize the corresponding candidate orbifold cover and take , e,eƒ as in Propo-
sition 3.11. Since the structure of S(2,4,4) is unique up to scaling we can assume e =  is
the orientation-preserving subgroup of the group generated by the reflections in the sides
of the triangle with vertices 0,1,  (so that X and eX have area 1). Then eΛ = Λ = 2Z ⊕ 2Z, so
2λ = 2+ 2y for , y ∈ Z, and d = |λ|2 = 2 + y2. Since d is odd,  and y have different parity.
Conversely, if d = 2 + y2 we can define eƒ (z) = ( + y) · z and we get ƒ . �

A remarkable fact about Theorem 3.13 is that the set of odd integers of the form 2 + y2

has asymptotic zero density, namely

lim
M→∞

1

M
#
�

d ¶M : d odd d = 2 + y2, , y ∈ Z
	

= 0.

However an old theorem of Fermat says that an odd prime is always the sum of two squares.
So the candidate branch datum

(S, S, d,3; [2 . . . ,2,1], [4, . . . ,4,1], [4, . . . ,4,1])

is exceptional with probability 1 but realizable when the degree is a prime.

We would also like to mention that a connection of Theorem 3.13 to the theory of elliptic
curves and universal ramified covers with signature was developed in [6].

An argument similar to that proving Theorem 3.13 shows that

(S, S,4k + 2,3; [2 . . . ,2], [4, . . . ,4,2], [4, . . . ,4,1,1])

is realizable precisely if d = 2(2 + y2), and

(S, S,4k + 4,3; [2 . . . ,2], [4, . . . ,4], [4, . . . ,4,2,1,1])

is realizable precisely if d = 4(2 + y2). In fact, we still have d = n2 + m2 for n,m ∈ Z, and
the extra information about which cone points are mapped to which gives conditions on the
parity of n and m that lead to the conclusion.

In [27] we have carried out a complete analysis of the candidate branch data with asso-
ciated Euclidean candidate orbifold cover, getting various realizability results, often in terms
of integer quadratic forms. This is another sample of our achievements:
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Theorem 3.14. The candidate branch data

(S, S, d,3; [2 . . . ,2,1], [3, . . . ,3,1], [6, . . . ,6,1])

(S, S, d,3; [3 . . . ,3,1], [3, . . . ,3,1], [3, . . . ,3,1])

are realizable if and only if d = 2 + y + y2 with , y ∈ Z.

A comment similar to that made for Theorem 3.13 applies here: the integers of the form
2 + y + y2 have asymptotic zero density, but a prime of the form 3k + 1 (or equivalently
6k + 1) can always be written as 2 + y + y2 by a result of Gauss.

Before concluding with the Euclidean case, we would like to mention that the case where
one of the involved orbifolds is S(2,2,2,2) is rather more complicated, because S(2,2,2,2)
does not have a unique geometric structure up to scaling.

3.9. The prime-degree conjecture

Theorems 3.13 and 3.14 and the comments accompanying them give a strong supporting
evidence to the conjecture made in [8] that any candidate branch datum with a prime degree
is realizable. We mention here that more recently, Zieve [39] conjectured that a candidate
branch datum

�

e, S, d, n;π1, . . . , πn
�

is realizable provided that

• GCD(πj) = 1 for j = 1, . . . , n, and

•
n
∑

j=1

�

1 − 1
lcm(πj)

�

6= 2.

As one easily sees, the candidate branch data with
n
∑

j=1

�

1 − 1
lcm(πj)

�

= 2 are precisely those

whose associated candidate orbifold cover is of Euclidean type. The results in [27], includ-
ing those stated above, show that indeed some of these data are exceptional (even with
GCD(πj) = 1 for j = 1, . . . , n in some cases). So an equivalent way of expressing Zieve’s con-
jecture is to say that a branch datum is realizable if GCD(πj) = 1 for j = 1, . . . , n and the
datum is not one of the exceptional ones found in [27]. This would imply the prime-degree
conjecture, because:

• If one of the π’s reduces to [d] only then the branch datum is realizable by [8];

• All the exceptional data of [27] occur when the degree is composite.

3.10. The hyperbolic case

We conclude by mentioning more results from [27] and from [28], where the realizability

of certain candidate orbifold covers eX
d:1
- - ->S(p1, p2, p3) of hyperbolic type was analyzed. To

describe the choice we have made of what candidates to study, we recall that the space
of hyperbolic structures on a surface of genus g with k cone points is an analytic space of
complex dimension 3(g−1)+k, so in particular any triangular hyperbolic S(p1, p2, p3) is rigid,
but in all other cases there are continuous deformations. We have then concentrated on the
cases where eX has deformation space of dimension at most 1, getting the results summarized
in the next table. For each possible type of eX we indicate the number of candidate branch

data for which there exists a corresponding eX
d:1
- - ->S(p1, p2, p3), and among these the number

of exceptional ones:
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eX candidates exceptions

S(q1, q2, q3) 11 2
S(q1, q2, q3, q4) 146 29
T(q) 22 5

Remark 3.15. The fact that for a given e and k there exist only finitely many candidate
branch data inducing some e(q1, . . . , qk)→ S(p1, p2, p3) is true but not completely obvious.

Remark 3.16. As opposed to what happened for the spherical and the Euclidean case, the
hyperbolic candidates analyzed in [27, 28] were selected using geometry, but their realiz-
ability or exceptionality was mostly discussed using combinatorial tools.
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