Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Winter Braids Lecture Notes
  • Tome 3 (2016)
  • Exposé no. 1
  • Suivant
Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.
Adam Baranowski1 ; Maciej Borodzik2, 1 ; Juan Serrano de Rodrigo3
1 Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland.
2 Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, Warsaw, Poland.
3 Dpto. de Matemáticas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, España.
Winter Braids Lecture Notes, Winter Braids VI (Lille, 2016), Tome 3 (2016), Exposé no. 1, 39 p.
  • Résumé

This is an expanded version of the lecture course the second author gave at Winterbraids VI in Lille in February 2016.

  • Détail
  • Export
  • Comment citer
Publié le : 2017-06-19
MR   Zbl
DOI : 10.5802/wbln.12
Affiliations des auteurs :
Adam Baranowski 1 ; Maciej Borodzik 2, 1 ; Juan Serrano de Rodrigo 3

1 Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland.
2 Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, Warsaw, Poland.
3 Dpto. de Matemáticas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, España.
  • BibTeX
  • RIS
  • EndNote
@article{WBLN_2016__3__A1_0,
     author = {Adam Baranowski and Maciej Borodzik and Juan Serrano de Rodrigo},
     title = {Heegaard {Floer} {Homologies} and {Rational} {Cuspidal} {Curves.} {Lecture} notes.},
     journal = {Winter Braids Lecture Notes},
     note = {talk:1},
     pages = {1--39},
     publisher = {Winter Braids School},
     volume = {3},
     year = {2016},
     doi = {10.5802/wbln.12},
     mrnumber = {3707742},
     zbl = {1431.57031},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.12/}
}
TY  - JOUR
AU  - Adam Baranowski
AU  - Maciej Borodzik
AU  - Juan Serrano de Rodrigo
TI  - Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.
JO  - Winter Braids Lecture Notes
N1  - talk:1
PY  - 2016
SP  - 1
EP  - 39
VL  - 3
PB  - Winter Braids School
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.12/
DO  - 10.5802/wbln.12
LA  - en
ID  - WBLN_2016__3__A1_0
ER  - 
%0 Journal Article
%A Adam Baranowski
%A Maciej Borodzik
%A Juan Serrano de Rodrigo
%T Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.
%J Winter Braids Lecture Notes
%Z talk:1
%D 2016
%P 1-39
%V 3
%I Winter Braids School
%U https://proceedings.centre-mersenne.org/articles/10.5802/wbln.12/
%R 10.5802/wbln.12
%G en
%F WBLN_2016__3__A1_0
Adam Baranowski; Maciej Borodzik; Juan Serrano de Rodrigo. Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.. Winter Braids Lecture Notes, Winter Braids VI (Lille, 2016), Tome 3 (2016), Exposé no. 1, 39 p. doi : 10.5802/wbln.12. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.12/
  • Bibliographie
  • Cité par

[1] S. Baader, P. Feller, L. Lewark, L. Liechti, On the topological 4-genus of torus knots, preprint 2015, arxiv:1509.07634, to appear in Trans. Amer. Math. Soc. | DOI | MR | Zbl

[2] J. Bodnár, Classification of rational unicuspidal curves with two Newton pairs, Acta Math. Hungar. 148 (2016), no. 2, 294–299. | DOI | MR | Zbl

[3] J. Bodnár, A. Némethi, Lattice cohomology and rational cuspidal curves, Math. Res. Lett. 23 (2016), no. 2, 339–375. | DOI | MR | Zbl

[4] M. Borodzik, E. Gorsky, Immersed concordances of links and Heegaard Floer homology, preprint 2016, arxiv:1601.07507, to appear in Indiana Univ. Math. J. | DOI | MR | Zbl

[5] M. Borodzik, M. Hedden, The ϒ function of L–space knots is a Legendre transform, Math. Proc. Cambridge Philos. Soc., 1-11. doi:10.1017/S030500411700024X | DOI | Zbl

[6] M. Borodzik, J. Hom, Involutive Heegaard Floer homology and rational cuspidal curves, preprint 2016, arxiv:1609.08303. | DOI | MR | Zbl

[7] M. Borodzik, C. Livingston, Heegaard Floer homologies and rational cuspidal curves, Forum of Math. Sigma, 2 (2014), e28, 23 pages. | DOI | MR | Zbl

[8] M. Borodzik, T. Moe, Topological obstructions for rational cuspidal curves in Hirzebruch surfaces, Michigan Math. J. 65 (2016), no. 4, 761–797. | DOI | MR | Zbl

[9] E. Brieskorn, H. Knörrer, Plane Algebraic Curves, Birkhäuser, Basel, 1986. | DOI | Zbl

[10] W. Burau, Kennzeichnung der Schlauchknoten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 9 (1932), 125–133. | DOI | MR | Zbl

[11] A. Campillo, F. Delgado, S. Gusein-Zade, The Alexander polynomial of a plane curve singularity via the ring of functions on it, Duke Math. J. 117 (2003), no. 1, 125–156. | DOI | MR | Zbl

[12] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173. | DOI | Zbl

[13] J. Coolidge, A treatise on plane algebraic curves, Oxford Univ. Press, Oxford, 1928. | DOI | Zbl

[14] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals Math. Studies 110, Princeton University Press, Princeton, 1985. | DOI | Zbl

[15] P. Feller, D. Krcatovich, On cobordisms between knots, braid index, and the Upsilon-invariant, preprint 2016, arxiv:1602.02637. | DOI | MR | Zbl

[16] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair, Proceedings of São Carlos Workshop 2004 Real and Complex Singularities, Series Trends in Mathematics, Birkhäuser 2007, 31–46. | DOI | Zbl

[17] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, On rational cuspidal projective plane curves, Proc. of London Math. Soc., 92 (2006), 99–138. | DOI | MR | Zbl

[18] H. Flenner and M. Zaidenberg, On a class of rational cuspidal plane curves, Manuscripta Math. 89 (1996), no. 4, 439–459. | DOI | MR | Zbl

[19] T. Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25. American Mathematical Society, Providence, RI, 2000. | DOI | Zbl

[20] P. Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008), no. 5, 1151–1169. | DOI | MR | Zbl

[21] R. E. Gompf, A. I. Stipsicz, 4–Manifolds and Kirby Calculus (Graduate Studies in Mathematics), American Mathematical Society, 1999. | DOI | Zbl

[22] G-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer–Verlag, Berlin–Heidelberg–New York, 2006. | DOI | Zbl

[23] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Revised and corrected reprint of the 1983 original. Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990. | DOI

[24] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. | DOI | Zbl

[25] M. Hedden, Notions of positivity and the Ozsváth-Szabó concordance invariant, J. Knot Theory Ramifications 19 (2010), no. 5, 617–629. | DOI | Zbl

[26] M. Hedden, On knot Floer homology and cabling. II., Int. Math. Res. Not. IMRN 2009, 2248–2274. | DOI | Zbl

[27] K. Hendricks, C. Manolescu, Involutive Heegaard Floer homology, preprint 2015, arxiv:1507.00383, to appear in Duke Math. Journal. | DOI | MR | Zbl

[28] K. Hendricks, C. Manolescu, I. Zemke, A connected sum formula for involutive Heegaard Floer homology, preprint 2016, arxiv:1607.07499. | DOI | MR | Zbl

[29] J. Hom, A note on cabling and L-space surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 219–223. | DOI | Zbl

[30] J. Hom, A survey on Heegaard Floer homology and concordance, preprint 2015, arxiv:1512.00383. | DOI | MR | Zbl

[31] J. Hom, T. Lidman and L. Watson, The Alexander invariant, Seifert forms, and categorification, preprint, arXiv: 1501.04866, to appear in J. Topology. | DOI | MR | Zbl

[32] S. Iitaka, On logarithmic Kodaira dimension of algebraic varietes, in: ‘Complex Analysis and Algebraic Geometry’ (A collection of papers dedicated to K. Kodaira), Iwanami, 1977, pp. 175–189. | DOI

[33] A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006), 1429–1457. | DOI | MR | Zbl

[34] A. Juhász, A survey of Heegaard Floer homology, New Ideas in Low Dimensional Topology, World Scientific, 2014, 237–296. | DOI | Zbl

[35] A. Juhász, D. Thurston, Naturality and mapping class groups in Heegaard Floer homology, preprint 2012, arxiv:1210.4996. | DOI

[36] H. Kashiwara, Fonctions rationnelles de type (0,1) sur le plan projectif complexe, Osaka J. Math. 24 (1987), no. 3, 521–577. | DOI | Zbl

[37] T. Kishimoto, Projective plane curves whose complements have logarithmic Kodaira dimension one, Japan. J. Math. 27 (2001), no. 2, 275–310. | DOI | MR | Zbl

[38] K. Kodaira, D. Spencer, On deformations of complex analytic structures. I, II., Ann. of Math. 67 (1958) 328–466. | DOI | MR | Zbl

[39] M. Koras, K. Palka, The Coolidge-Nagata conjecture, Duke Math. J. (2017), 61 pp, DOI 00127094-2017-0010. | DOI | MR | Zbl

[40] D. Krcatovich, The reduced knot Floer complex, Topology Appl. 194 (2015), 171–201. | DOI | MR | Zbl

[41] P. Kronheimer, T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808. | DOI | MR | Zbl

[42] P. Kronheimer, T. Mrowka, Monopoles and three–manifolds, New Mathematical Monographs, 10. Cambridge University Press, Cambridge, 2007. | DOI | Zbl

[43] Ç. Kutluhan, Y. Lee, C. H. Taubes, HF=HM I: Heegaard Floer homology and Seiberg-Witten Floer homology, preprint 2011, arxiv:1007.1979v5 | DOI | MR

[44] R. Lee, D. Wilczyński, Locally flat 2-spheres in simply connected 4–manifolds, Comment. Math. Helv. 65 (1990), no. 3, 388–412. | DOI | MR | Zbl

[45] A. Levine and D.Ruberman, Generalized Heegaard Floer correction terms, Proceedings of the 20th Gökova Geometry/Topology Conference, 76–96. | DOI | MR | Zbl

[46] R. Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006), 955–1097. | DOI | MR | Zbl

[47] T. Liu, On planar rational cuspidal curves, Ph.D. thesis, 2014, at M.I.T., available at http://dspace.mit.edu/bitstream/handle/1721.1/90190/890211671.pdf. | DOI | MR | Zbl

[48] Y. Liu, L-space surgeries on links, to appear in Quant. Topol., arXiv:1409.0075. | DOI | MR | Zbl

[49] I. Luengo, The μ–constant stratum is not smooth, Invent. Math. 90 (1987) 139–152. | DOI | MR | Zbl

[50] I. Luengo, A. Melle Hernández, A. Némethi, Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 14 (2005) 543–565. | DOI | MR | Zbl

[51] R. Lipshitz, P. Ozsváth, D. Thurston, Bordered Heegaard Floer homology: Invariance and pairing, preprint, arXiv:0810.0687. | DOI | MR | Zbl

[52] R. Lipshitz, P. Ozsváth, D. Thurston, Tour of bordered Floer theory, Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8085–8092. | DOI | MR | Zbl

[53] R. Lipshitz, P. Ozsváth, D. Thurston, Notes on bordered Floer homology, Contact and symplectic topology, 275–355, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014. | DOI | Zbl

[54] C. Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom. Topol. 8 (2004), 735–742. | DOI | Zbl

[55] C. Manolescu, An introduction to knot Floer homology, preprint 2014, arxiv:1401.7107. To appear in Proceedings of the 2013 SMS Summer School on Homology Theories of Knots and Links. | DOI | Zbl

[56] C. Manolescu, B. Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 2007, no. 20, Art. ID rnm077, 21 pp. | DOI | Zbl

[57] C. Manolescu, P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry–Topology Conference 2007, 60–81, Gökova Geometry/Topology Conference (GGT), Gökova, 2008. | DOI | MR | Zbl

[58] C. Manolescu, P. Ozsváth, Heegaard Floer homology and integer surgeries on links, preprint 2010, arxiv:1011.1317. | DOI | Zbl

[59] T. Matsuoka, F. Sakai, The degree of rational cuspidal curves, Math. Ann. 285 (1989), 233–247. | DOI | MR | Zbl

[60] J. Milnor, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, NJ, 1965. | DOI | Zbl

[61] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies. 61, Princeton University Press and the University of Tokyo Press, Princeton, NJ, 1968. | DOI | Zbl

[62] T. K. Moe, Rational cuspidal curves, Master Thesis, University of Oslo 2008, available at arXiv:1511.02691. | DOI | MR

[63] T. K. Moe, Rational cuspidal curves with four cusps on Hirzebruch surfaces, Le Matematiche Vol. LXIX (2014) Fasc. II, 295–318. doi: 10.4418/2014.69.2.25. | DOI | MR | Zbl

[64] T. K. Moe, On the number of cusps on cuspidal curves on Hirzebruch surfaces, Math. Nachrichten. 288 (2015), 76–88. | DOI | MR | Zbl

[65] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. | DOI | MR | Zbl

[66] M. Nagata, On rational surfaces. I: Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci., Univ. Kyoto, Ser. A 32 (1960), 351–370. | DOI | MR | Zbl

[67] M. Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, 88. Marcel Dekker, Inc., New York, 1984. | DOI

[68] P. Nayar, B. Pilat, A note on the rational cuspidal curves, Bull. Polish Acad. Science., 62 (2014), no. 2, 117–123. | DOI | MR | Zbl

[69] A. Némethi, L Nicolaescu, Seiberg–Witten invariants and surface singularities, Geom. Topol. 6 (2002) 269–328. | DOI | MR | Zbl

[70] A. Némethi, L. Nicolaescu, Seiberg–Witten invariants and surface singularities II, singularities with good ℂ * –action, J. London Math. Soc. 69 (2004) 593–607. | DOI | MR | Zbl

[71] A. Némethi, L. Nicolaescu, Seiberg–Witten invariants and surface singularities: splicings and cyclic covers, Sel. Math. New Ser. 11 (2005), 399–451. | DOI | MR | Zbl

[72] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577–608. Erratum: Knot Floer homology detects fibred knots Invent. Math. 177 (2009), no. 1, 235–238. | DOI | MR | Zbl

[73] Y. Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13 (2009), no. 5, 2991–3019. | DOI | MR | Zbl

[74] Y. Ni, Z. Wu, Cosmetic surgeries on knots in S 3 , J. Reine Angew. Math. 706 (2015), 1–17. | DOI | Zbl

[75] L. Nicolaescu, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, 28. American Mathematical Society, Providence, RI, 2000. | DOI | Zbl

[76] S. Orevkov, On rational cuspidal curves. I. Sharp estimates for degree via multiplicity, Math. Ann. 324 (2002), 657–673. | DOI | Zbl

[77] P. Ozsváth, A. Stipsicz, Z. Szabó, Concordance homomorphisms from knot Floer homology, preprint 2014, arxiv:1407.1795. | DOI | MR | Zbl

[78] P. Ozsváth, A. Stipsicz, Z. Szabó, Grid homology for knots and links, Mathematical Surveys and Monographs, 208. American Mathematical Society, Providence, RI, 2015. | DOI | Zbl

[79] P. Ozsváth, Z. Szabó, Absolutely graded Floer homologies and intersection forms for four–manifolds with boundary, Adv. Math. 173 (2003), 179–261. | DOI | MR | Zbl

[80] P. Ozsváth, Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225–254. | DOI | MR | Zbl

[81] P. Ozsváth, Z. Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. | DOI | MR | Zbl

[82] P. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027–1158. | DOI | MR | Zbl

[83] P. Ozsváth, Z. Szabó, Holomorphic disks and three manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159–1245. | DOI | MR | Zbl

[84] P. Ozsváth, Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58–116. | DOI | MR | Zbl

[85] P. Ozsváth, Z. Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334. | DOI | MR | Zbl

[86] P. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, Topology, 44 (2005), 1281–1300. | DOI | MR | Zbl

[87] P. Ozsváth, Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1–33. | DOI | MR | Zbl

[88] P. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326–400. | DOI | MR | Zbl

[89] P. Ozsváth, Z. Szabó, An introduction to Heegaard Floer homology, in: Floer homology, gauge theory, and low-dimensional topology, 3–27, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006. | DOI | MR | Zbl

[90] P. Ozsváth, Z. Szabó, Lectures on Heegaard Floer homology, in: Floer homology, gauge theory, and low-dimensional topology, 29–70, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006. | DOI | MR | Zbl

[91] P. Ozsváth, Z. Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101–153. | DOI | MR | Zbl

[92] P. Ozsváth, Z. Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), 1–68. | DOI | MR | Zbl

[93] K. Palka, Cuspidal curves, minimal models and Zaidenberg’s finiteness conjecture, J. Reine Angew. Math (Crelle’s Journal), preprint 2016, arxiv:1405.5346. | DOI | MR | Zbl

[94] K. Palka, The Coolidge-Nagata conjecture, part I, Adv. Math. 267 (2014), 1–43. | DOI | MR | Zbl

[95] K. Palka, T. Pełka, Classification of planar rational cuspidal curves. I. ℂ ** -fibrations, preprint 2016, arxiv:1609.03992. | DOI | MR | Zbl

[96] T. Perutz, Hamiltonian handleslides for Heegaard Floer homology, Proceedings of Gökova Geometry-Topology Conference 2007, 15–35, Gökova Geometry/Topology Conference (GGT), Gökova, 2008. | DOI | MR | Zbl

[97] T. Peters, A concordance invariant from the Floer homology of ±1 surgeries, preprint 2010, arxiv:1003.3038. | DOI

[98] J. Piontkowski, On the number of cusps of rational cuspidal plane curves, Experiment. Math. 16 (2007), no. 2, 251–255. | DOI | MR | Zbl

[99] J. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005. | DOI | Zbl

[100] J. Rasmussen, Floer homology and knot complements, Harvard thesis, 2003, available at arxiv:math/0306378. | DOI | MR

[101] D. Rolfsen, Knots and links, Publish or Perish, 1976. | DOI

[102] J. Robbin, D. Salamon, The Maslov index for paths, Topology 32 (4) (1993), 827–844. | DOI | MR | Zbl

[103] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51–59. | DOI | MR | Zbl

[104] S. Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom. Topol. 15 (2015), no. 5, 2479–2515. | DOI | MR | Zbl

[105] A. Scorpan, The wild world of 4–manifolds, American Mathematical Society, Providence, RI, 2005. | DOI | Zbl

[106] K. Tono, Rational unicuspidal plane curves with κ ¯=1, Newton polyhedra and singularities (Kyoto, 2001). Sūrikaisekikenkyūsho Kōkyūroku 1233 (2001), 82–89. | DOI | MR | Zbl

[107] K. Tono, On the number of cusps of cuspidal plane curves, Math. Nachr. 278 (2005), 216–221. | DOI | MR | Zbl

[108] S. Tsunoda, The complements of projective plane curves, RIMS-Kôkyûroku, 446 (1981), 48–56, available at http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0446-06.pdf. | DOI | Zbl

[109] V. Turaev, Torsion invariants of Spin c –structures on 3–manifolds, Math. Res. Lett., 4 (5) (1997), 679–695. | DOI | MR | Zbl

[110] V. Turaev, Torsions of 3–dimensional manifolds, Progress in Mathematics, 208. Birkhäuser Verlag, Basel, 2002. | DOI | Zbl

[111] I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in ℙ 2 , Proc. Japan Acad. Ser. A. Math. Sci. 54 (1978), 157–162. | DOI | MR | Zbl

[112] C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge, 2004. | DOI | Zbl

[113] O. Zariski, On the topology of algebroid singularities, Amer. J. Math. 54 (1932), 453–465. | DOI | MR | Zbl

[114] O. Zariski, Algebraic surfaces, With appendices by S. Abhyankar, J. Lipman and D. Mumford. Preface to the appendices by Mumford. Reprint of the second (1971) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995. | DOI

[115] I. Zemke, Quasi-stabilization and basepoint moving maps in link Floer homology, preprint 2016, arxiv:1604.04316. | DOI | MR | Zbl

[116] I. Zemke, Connected sums and involutive knot Floer homology, preprint 2017, arxiv:1705.01117. | DOI | MR | Zbl

[117] H. Żoładek, The monodromy group, Mathematical monographs (new series), 67, Birkhäuser Verlag, Basel, 2006. | DOI | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre