By a result of W. P. Thurston, the moduli space of flat metrics on the sphere with cone singularities of prescribed positive curvatures is a complex hyperbolic orbifold of dimension . The Hermitian form comes from the area of the metric. Using geometry of Euclidean polyhedra, we observe that this space has a natural decomposition into real hyperbolic convex polyhedra of dimensions and .
By a result of W. Veech, the moduli space of flat metrics on a compact surface with cone singularities of prescribed negative curvatures has a foliation whose leaves have a local structure of complex pseudo-spheres. The complex structure comes again from the area of the metric. The form can be degenerate; its signature depends on the curvatures prescribed. Using polyhedral surfaces in Minkowski space, we show that this moduli space has a natural decomposition into spherical convex polyhedra.
@article{TSG_2016-2017__34__65_0, author = {Fran\c{c}ois Fillastre and Ivan Izmestiev}, title = {A remark on spaces of flat metrics with cone singularities of constant sign curvatures}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {65--92}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, year = {2016-2017}, doi = {10.5802/tsg.355}, zbl = {1367.52010}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/} }
TY - JOUR AU - François Fillastre AU - Ivan Izmestiev TI - A remark on spaces of flat metrics with cone singularities of constant sign curvatures JO - Séminaire de théorie spectrale et géométrie PY - 2016-2017 SP - 65 EP - 92 VL - 34 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/ DO - 10.5802/tsg.355 LA - en ID - TSG_2016-2017__34__65_0 ER -
%0 Journal Article %A François Fillastre %A Ivan Izmestiev %T A remark on spaces of flat metrics with cone singularities of constant sign curvatures %J Séminaire de théorie spectrale et géométrie %D 2016-2017 %P 65-92 %V 34 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/ %R 10.5802/tsg.355 %G en %F TSG_2016-2017__34__65_0
François Fillastre; Ivan Izmestiev. A remark on spaces of flat metrics with cone singularities of constant sign curvatures. Séminaire de théorie spectrale et géométrie, Volume 34 (2016-2017), pp. 65-92. doi : 10.5802/tsg.355. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/
[1] Aleksandr D. Alexandrov Selected works. Part I: Selected scientific papers, Classics of Soviet Mathematics, 4, Gordon and Breach Publishers, 1996, x+322 pages | MR | Zbl
[2] Aleksandr D. Alexandrov Convex polyhedra, Springer Monographs in Mathematics, Springer, 2005, xii+539 pages | MR | Zbl
[3] Nicholas Barvinok; Mohammad Ghomi Pseudo-edge unfoldings of convex polyhedra (2017) (https://arxiv.org/abs/1709.04944, to appear in Discrete Comput. Geom.) | DOI
[4] Christophe Bavard; Étienne Ghys Polygones du plan et polyèdres hyperboliques, Geom. Dedicata, Volume 43 (1992) no. 2, pp. 207-224 | DOI | MR | Zbl
[5] Francis Bonahon Low-dimensional geometry. From Euclidean surfaces to hyperbolic knots, Student Mathematical Library, 49, American Mathematical Society; Institute for Advanced Study, 2009, xvi+384 pages | DOI | MR | Zbl
[6] Francis Bonsante; François Fillastre The equivariant Minkowski problem in Minkowski space, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1035-1113 | DOI | MR | Zbl
[7] Léo Brunswic Surfaces de Cauchy polyédrales des espace-temps plats singuliers, Université d’Avignon (France) (2017) (Ph. D. Thesis)
[8] Guillaume Carlier On a theorem of Alexandrov, J. Nonlinear Convex Anal., Volume 5 (2004) no. 1, pp. 49-58 | MR | Zbl
[9] Clément Debin Géométrie des surfaces singulières, Université Grenoble Alpes (France) (2016) (Ph. D. Thesis)
[10] Clément Debin; François Fillastre Hyperbolic geometry of shapes of convex bodies (2018) (https://arxiv.org/abs/1806.09524)
[11] François Fillastre From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston, Enseign. Math., Volume 57 (2011) no. 1-2, pp. 23-56 | DOI | MR | Zbl
[12] François Fillastre Fuchsian polyhedra in Lorentzian space-forms, Math. Ann., Volume 350 (2011) no. 2, pp. 417-453 | DOI | MR | Zbl
[13] François Fillastre Fuchsian convex bodies: basics of Brunn-Minkowski theory, Geom. Funct. Anal., Volume 23 (2013) no. 1, pp. 295-333 | DOI | MR | Zbl
[14] François Fillastre Polygons of the Lorentzian plane and spherical simplexes, Elem. Math., Volume 69 (2014) no. 3, pp. 144-155 | DOI | MR | Zbl
[15] François Fillastre A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies, Sémin. Théor. Spectr. Géom., Volume 34 (2019), pp. 93-96
[16] François Fillastre; Ivan Izmestiev Shapes of polyhedra, mixed volumes, and hyperbolic geometry, Mathematika, Volume 63 (2017), pp. 124-183 | DOI | MR | Zbl
[17] François Fillastre; Giona Veronelli Lorentzian area measures and the Christoffel problem, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 5, pp. 383-467 | MR | Zbl
[18] Selim Ghazouani; Luc Pirio Moduli spaces of flat tori with prescribed holonomy, Geom. Funct. Anal., Volume 27 (2017) no. 6, pp. 1289-1366 | DOI | MR | Zbl
[19] Erhard Heil Extensions of an inequality of Bonnesen to -dimensional space and curvature conditions for convex bodies, Aequationes Math., Volume 34 (1987) no. 1, pp. 35-60 | DOI | MR | Zbl
[20] Ivan Izmestiev The Colin de Verdière number and graphs of polytopes, Isr. J. Math., Volume 178 (2010), pp. 427-444 | DOI | MR | Zbl
[21] Askold Khovanskiĭ; Vladlen Timorin On the theory of coconvex bodies, Discrete Comput. Geom., Volume 52 (2014) no. 4, pp. 806-823 | DOI | MR | Zbl
[22] Sadayoshi Kojima Complex hyperbolic cone structures on the configuration spaces, Rend. Ist. Mat. Univ. Trieste, Volume 32 (2001) no. 1, pp. 149-163 | MR | Zbl
[23] Duc-Manh Nguyen Triangulations and volume form on moduli spaces of flat surfaces, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 192-228 | DOI | MR | Zbl
[24] Rolf Schneider Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and Its Applications, 151, Cambridge University Press, 2014, xxii+736 pages | MR | Zbl
[25] Richard Evan Schwartz Notes on Shapes of Polyhedra (2015) (https://arxiv.org/abs/1506.07252) | Zbl
[26] William P. Thurston Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift (Geometry and Topology Monographs), Volume 1, Geometry and Topology Publications, 1998, pp. 511-549 | DOI | MR | Zbl
[27] Marc Troyanov Les surfaces euclidiennes à singularités coniques, Enseign. Math., Volume 32 (1986) no. 1-2, pp. 79-94 | MR | Zbl
[28] Marc Troyanov On the moduli space of singular Euclidean surfaces, Handbook of Teichmüller theory. Vol. I (IRMA Lectures in Mathematics and Theoretical Physics), Volume 11, European Mathematical Society, 2007, pp. 507-540 | DOI | MR | Zbl
[29] William A. Veech Flat surfaces, Am. J. Math., Volume 115 (1993) no. 3, pp. 589-689 | DOI | MR | Zbl
Cited by Sources: