Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire de théorie spectrale et géométrie
  • Tome 34 (2016-2017)
  • p. 65-92
  • Suivant
A remark on spaces of flat metrics with cone singularities of constant sign curvatures
François Fillastre1 ; Ivan Izmestiev2
1 Université de Cergy-Pontoise UMR CNRS 8088 95000 Cergy-Pontoise (France)
2 TU Wien Wiedner Hauptstraße 8-10/104 A-1040 Wien (Austria)
Séminaire de théorie spectrale et géométrie, Tome 34 (2016-2017), pp. 65-92.
  • Résumé

By a result of W. P. Thurston, the moduli space of flat metrics on the sphere with n cone singularities of prescribed positive curvatures is a complex hyperbolic orbifold of dimension n-3. The Hermitian form comes from the area of the metric. Using geometry of Euclidean polyhedra, we observe that this space has a natural decomposition into real hyperbolic convex polyhedra of dimensions n-3 and ≤1 2(n-1).

By a result of W. Veech, the moduli space of flat metrics on a compact surface with cone singularities of prescribed negative curvatures has a foliation whose leaves have a local structure of complex pseudo-spheres. The complex structure comes again from the area of the metric. The form can be degenerate; its signature depends on the curvatures prescribed. Using polyhedral surfaces in Minkowski space, we show that this moduli space has a natural decomposition into spherical convex polyhedra.

  • Détail
  • Export
  • Comment citer
Zbl
DOI : 10.5802/tsg.355
Keywords: Flat metrics, convex polyhedra, mixed volumes, Minkowski space, covolume
Affiliations des auteurs :
François Fillastre 1 ; Ivan Izmestiev 2

1 Université de Cergy-Pontoise UMR CNRS 8088 95000 Cergy-Pontoise (France)
2 TU Wien Wiedner Hauptstraße 8-10/104 A-1040 Wien (Austria)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2016-2017__34__65_0,
     author = {Fran\c{c}ois Fillastre and Ivan Izmestiev},
     title = {A remark on spaces of flat metrics with cone singularities of constant sign curvatures},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {65--92},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     year = {2016-2017},
     doi = {10.5802/tsg.355},
     zbl = {1367.52010},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/}
}
TY  - JOUR
AU  - François Fillastre
AU  - Ivan Izmestiev
TI  - A remark on spaces of flat metrics with cone singularities of constant sign curvatures
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2016-2017
SP  - 65
EP  - 92
VL  - 34
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/
DO  - 10.5802/tsg.355
LA  - en
ID  - TSG_2016-2017__34__65_0
ER  - 
%0 Journal Article
%A François Fillastre
%A Ivan Izmestiev
%T A remark on spaces of flat metrics with cone singularities of constant sign curvatures
%J Séminaire de théorie spectrale et géométrie
%D 2016-2017
%P 65-92
%V 34
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/
%R 10.5802/tsg.355
%G en
%F TSG_2016-2017__34__65_0
François Fillastre; Ivan Izmestiev. A remark on spaces of flat metrics with cone singularities of constant sign curvatures. Séminaire de théorie spectrale et géométrie, Tome 34 (2016-2017), pp. 65-92. doi : 10.5802/tsg.355. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.355/
  • Bibliographie
  • Cité par

[1] Aleksandr D. Alexandrov Selected works. Part I: Selected scientific papers, Classics of Soviet Mathematics, 4, Gordon and Breach Publishers, 1996, x+322 pages | MR | Zbl

[2] Aleksandr D. Alexandrov Convex polyhedra, Springer Monographs in Mathematics, Springer, 2005, xii+539 pages | MR | Zbl

[3] Nicholas Barvinok; Mohammad Ghomi Pseudo-edge unfoldings of convex polyhedra (2017) (https://arxiv.org/abs/1709.04944, to appear in Discrete Comput. Geom.) | DOI

[4] Christophe Bavard; Étienne Ghys Polygones du plan et polyèdres hyperboliques, Geom. Dedicata, Volume 43 (1992) no. 2, pp. 207-224 | DOI | MR | Zbl

[5] Francis Bonahon Low-dimensional geometry. From Euclidean surfaces to hyperbolic knots, Student Mathematical Library, 49, American Mathematical Society; Institute for Advanced Study, 2009, xvi+384 pages | DOI | MR | Zbl

[6] Francis Bonsante; François Fillastre The equivariant Minkowski problem in Minkowski space, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1035-1113 | DOI | MR | Zbl

[7] Léo Brunswic Surfaces de Cauchy polyédrales des espace-temps plats singuliers, Université d’Avignon (France) (2017) (Ph. D. Thesis)

[8] Guillaume Carlier On a theorem of Alexandrov, J. Nonlinear Convex Anal., Volume 5 (2004) no. 1, pp. 49-58 | MR | Zbl

[9] Clément Debin Géométrie des surfaces singulières, Université Grenoble Alpes (France) (2016) (Ph. D. Thesis)

[10] Clément Debin; François Fillastre Hyperbolic geometry of shapes of convex bodies (2018) (https://arxiv.org/abs/1806.09524)

[11] François Fillastre From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston, Enseign. Math., Volume 57 (2011) no. 1-2, pp. 23-56 | DOI | MR | Zbl

[12] François Fillastre Fuchsian polyhedra in Lorentzian space-forms, Math. Ann., Volume 350 (2011) no. 2, pp. 417-453 | DOI | MR | Zbl

[13] François Fillastre Fuchsian convex bodies: basics of Brunn-Minkowski theory, Geom. Funct. Anal., Volume 23 (2013) no. 1, pp. 295-333 | DOI | MR | Zbl

[14] François Fillastre Polygons of the Lorentzian plane and spherical simplexes, Elem. Math., Volume 69 (2014) no. 3, pp. 144-155 | DOI | MR | Zbl

[15] François Fillastre A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies, Sémin. Théor. Spectr. Géom., Volume 34 (2019), pp. 93-96

[16] François Fillastre; Ivan Izmestiev Shapes of polyhedra, mixed volumes, and hyperbolic geometry, Mathematika, Volume 63 (2017), pp. 124-183 | DOI | MR | Zbl

[17] François Fillastre; Giona Veronelli Lorentzian area measures and the Christoffel problem, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 5, pp. 383-467 | MR | Zbl

[18] Selim Ghazouani; Luc Pirio Moduli spaces of flat tori with prescribed holonomy, Geom. Funct. Anal., Volume 27 (2017) no. 6, pp. 1289-1366 | DOI | MR | Zbl

[19] Erhard Heil Extensions of an inequality of Bonnesen to D-dimensional space and curvature conditions for convex bodies, Aequationes Math., Volume 34 (1987) no. 1, pp. 35-60 | DOI | MR | Zbl

[20] Ivan Izmestiev The Colin de Verdière number and graphs of polytopes, Isr. J. Math., Volume 178 (2010), pp. 427-444 | DOI | MR | Zbl

[21] Askold Khovanskiĭ; Vladlen Timorin On the theory of coconvex bodies, Discrete Comput. Geom., Volume 52 (2014) no. 4, pp. 806-823 | DOI | MR | Zbl

[22] Sadayoshi Kojima Complex hyperbolic cone structures on the configuration spaces, Rend. Ist. Mat. Univ. Trieste, Volume 32 (2001) no. 1, pp. 149-163 | MR | Zbl

[23] Duc-Manh Nguyen Triangulations and volume form on moduli spaces of flat surfaces, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 192-228 | DOI | MR | Zbl

[24] Rolf Schneider Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and Its Applications, 151, Cambridge University Press, 2014, xxii+736 pages | MR | Zbl

[25] Richard Evan Schwartz Notes on Shapes of Polyhedra (2015) (https://arxiv.org/abs/1506.07252) | Zbl

[26] William P. Thurston Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift (Geometry and Topology Monographs), Volume 1, Geometry and Topology Publications, 1998, pp. 511-549 | DOI | MR | Zbl

[27] Marc Troyanov Les surfaces euclidiennes à singularités coniques, Enseign. Math., Volume 32 (1986) no. 1-2, pp. 79-94 | MR | Zbl

[28] Marc Troyanov On the moduli space of singular Euclidean surfaces, Handbook of Teichmüller theory. Vol. I (IRMA Lectures in Mathematics and Theoretical Physics), Volume 11, European Mathematical Society, 2007, pp. 507-540 | DOI | MR | Zbl

[29] William A. Veech Flat surfaces, Am. J. Math., Volume 115 (1993) no. 3, pp. 589-689 | DOI | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre