Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire de théorie spectrale et géométrie
  • Tome 34 (2016-2017)
  • p. 93-96
  • Suivant
A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies
François Fillastre1
1 Université de Cergy-Pontoise UMR CNRS 8088 95000 Cergy-Pontoise (France)
Séminaire de théorie spectrale et géométrie, Tome 34 (2016-2017), pp. 93-96.
  • Résumé

The theory of coconvex bodies was formalized by A. Khovanskiĭ and V. Timorin in [4]. It has fascinating relations with the classical theory of convex bodies, as well as applications to Lorentzian geometry. In a recent preprint [5], R. Schneider proved a result that implies a reversed Brunn–Minkowski inequality for coconvex bodies, with description of equality case. In this note we show that this latter result is an immediate consequence of a more general result, namely that the volume of coconvex bodies is strictly convex. This result itself follows from a classical elementary result about the concavity of the volume of convex bodies inscribed in the same cylinder.

  • Détail
  • Export
  • Comment citer
DOI : 10.5802/tsg.356
Keywords: coconvex sets, covolume, Brunn–Minkowski
Affiliations des auteurs :
François Fillastre 1

1 Université de Cergy-Pontoise UMR CNRS 8088 95000 Cergy-Pontoise (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2016-2017__34__93_0,
     author = {Fran\c{c}ois Fillastre},
     title = {A short elementary proof of reversed {Brunn{\textendash}Minkowski} inequality for coconvex bodies},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {93--96},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     year = {2016-2017},
     doi = {10.5802/tsg.356},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/}
}
TY  - JOUR
AU  - François Fillastre
TI  - A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2016-2017
SP  - 93
EP  - 96
VL  - 34
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/
DO  - 10.5802/tsg.356
LA  - en
ID  - TSG_2016-2017__34__93_0
ER  - 
%0 Journal Article
%A François Fillastre
%T A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies
%J Séminaire de théorie spectrale et géométrie
%D 2016-2017
%P 93-96
%V 34
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/
%R 10.5802/tsg.356
%G en
%F TSG_2016-2017__34__93_0
François Fillastre. A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies. Séminaire de théorie spectrale et géométrie, Tome 34 (2016-2017), pp. 93-96. doi : 10.5802/tsg.356. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/
  • Bibliographie
  • Cité par

[1] Tommy Bonnesen; Werner Fenchel Theory of convex bodies, BCS Associates, 1987, x+172 pages (Translated from the German and edited by L. Boron, C. Christenson and B. Smith) | MR | Zbl

[2] Francesco Bonsante; François Fillastre The equivariant Minkowski problem in Minkowski space, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1035-1113 | DOI | MR | Zbl

[3] François Fillastre Fuchsian convex bodies: basics of Brunn–Minkowski theory, Geom. Funct. Anal., Volume 23 (2013) no. 1, pp. 295-333 | DOI | MR | Zbl

[4] Askold Khovanskiĭ; Vladlen Timorin On the theory of coconvex bodies, Discrete Comput. Geom., Volume 52 (2014) no. 4, pp. 806-823 | DOI | MR | Zbl

[5] Rolf Schneider A Brunn–Minkowski theory for coconvex sets of finite volume, Adv. Math., Volume 332 (2018), pp. 199-234 | DOI | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre