The theory of coconvex bodies was formalized by A. Khovanskiĭ and V. Timorin in [4]. It has fascinating relations with the classical theory of convex bodies, as well as applications to Lorentzian geometry. In a recent preprint [5], R. Schneider proved a result that implies a reversed Brunn–Minkowski inequality for coconvex bodies, with description of equality case. In this note we show that this latter result is an immediate consequence of a more general result, namely that the volume of coconvex bodies is strictly convex. This result itself follows from a classical elementary result about the concavity of the volume of convex bodies inscribed in the same cylinder.
@article{TSG_2016-2017__34__93_0, author = {Fran\c{c}ois Fillastre}, title = {A short elementary proof of reversed {Brunn{\textendash}Minkowski} inequality for coconvex bodies}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {93--96}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, year = {2016-2017}, doi = {10.5802/tsg.356}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/} }
TY - JOUR AU - François Fillastre TI - A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies JO - Séminaire de théorie spectrale et géométrie PY - 2016-2017 SP - 93 EP - 96 VL - 34 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/ DO - 10.5802/tsg.356 LA - en ID - TSG_2016-2017__34__93_0 ER -
%0 Journal Article %A François Fillastre %T A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies %J Séminaire de théorie spectrale et géométrie %D 2016-2017 %P 93-96 %V 34 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/ %R 10.5802/tsg.356 %G en %F TSG_2016-2017__34__93_0
François Fillastre. A short elementary proof of reversed Brunn–Minkowski inequality for coconvex bodies. Séminaire de théorie spectrale et géométrie, Volume 34 (2016-2017), pp. 93-96. doi : 10.5802/tsg.356. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.356/
[1] Tommy Bonnesen; Werner Fenchel Theory of convex bodies, BCS Associates, 1987, x+172 pages (Translated from the German and edited by L. Boron, C. Christenson and B. Smith) | MR | Zbl
[2] Francesco Bonsante; François Fillastre The equivariant Minkowski problem in Minkowski space, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1035-1113 | DOI | MR | Zbl
[3] François Fillastre Fuchsian convex bodies: basics of Brunn–Minkowski theory, Geom. Funct. Anal., Volume 23 (2013) no. 1, pp. 295-333 | DOI | MR | Zbl
[4] Askold Khovanskiĭ; Vladlen Timorin On the theory of coconvex bodies, Discrete Comput. Geom., Volume 52 (2014) no. 4, pp. 806-823 | DOI | MR | Zbl
[5] Rolf Schneider A Brunn–Minkowski theory for coconvex sets of finite volume, Adv. Math., Volume 332 (2018), pp. 199-234 | DOI | MR | Zbl
Cited by Sources: