We study actions of finite groups on moduli spaces of stable holomorphic vector bundles and relate the fixed-point sets of those actions to representation varieties of orbifold fundamental groups.
@article{TSG_2016-2017__34__33_0, author = {Florent Schaffhauser}, title = {Finite group actions on moduli spaces of vector bundles}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {33--63}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, year = {2016-2017}, doi = {10.5802/tsg.354}, zbl = {1360.30037}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.354/} }
TY - JOUR AU - Florent Schaffhauser TI - Finite group actions on moduli spaces of vector bundles JO - Séminaire de théorie spectrale et géométrie PY - 2016-2017 SP - 33 EP - 63 VL - 34 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.354/ DO - 10.5802/tsg.354 LA - en ID - TSG_2016-2017__34__33_0 ER -
%0 Journal Article %A Florent Schaffhauser %T Finite group actions on moduli spaces of vector bundles %J Séminaire de théorie spectrale et géométrie %D 2016-2017 %P 33-63 %V 34 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.354/ %R 10.5802/tsg.354 %G en %F TSG_2016-2017__34__33_0
Florent Schaffhauser. Finite group actions on moduli spaces of vector bundles. Séminaire de théorie spectrale et géométrie, Volume 34 (2016-2017), pp. 33-63. doi : 10.5802/tsg.354. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.354/
[1] Jørgen E. Andersen; Jakob Grove Automorphism fixed points in the moduli space of semi-stable bundles, Q. J. Math, Volume 57 (2006) no. 1, pp. 1-35 | DOI | MR | Zbl
[2] Michael F. Atiyah -theory and reality, Q. J. Math., Oxf. II. Ser., Volume 17 (1966), pp. 367-386 | DOI | MR | Zbl
[3] Michael F. Atiyah; Raoul Bott The Yang–Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., A, Volume 308 (1983) no. 1505, pp. 523-615 | DOI | MR | Zbl
[4] Vikraman Balaji; Conjeeveram S. Seshadri Moduli of parahoric -torsors on a compact Riemann surface, J. Algebr. Geom., Volume 24 (2015) no. 1, pp. 1-49 | DOI | MR | Zbl
[5] Indranil Biswas; Johannes Huisman; Jacques Hurtubise The moduli space of stable vector bundles over a real algebraic curve, Math. Ann., Volume 347 (2010) no. 1, pp. 201-233 | DOI | MR | Zbl
[6] Philip P. Boalch Riemann–Hilbert for tame complex parahoric connections, Transform. Groups, Volume 16 (2011) no. 1, pp. 27-50 | DOI | MR | Zbl
[7] Georgios D. Daskalopoulos The topology of the space of stable bundles on a compact Riemann surface, J. Differ. Geom., Volume 36 (1992) no. 3, pp. 699-746 | MR | Zbl
[8] Georgios D. Daskalopoulos; Karen K. Uhlenbeck An application of transversality to the topology of the moduli space of stable bundles, Topology, Volume 34 (1995) no. 1, pp. 203-215 | DOI | MR | Zbl
[9] Simon K. Donaldson A new proof of a theorem of Narasimhan and Seshadri, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 269-277 | MR | Zbl
[10] Mikio Furuta; Brian Steer Seifert fibred homology -spheres and the Yang–Mills equations on Riemann surfaces with marked points, Adv. Math., Volume 96 (1992) no. 1, pp. 38-102 | DOI | MR | Zbl
[11] Günter Harder; Mudumbai S. Narasimhan On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., Volume 212 (1975), pp. 215-248 | DOI | MR | Zbl
[12] Victoria Hoskins; Florent Schaffhauser Rational points of quiver moduli spaces, 2017 (https://arxiv.org/abs/1704.08624) | Zbl
[13] Victoria Hoskins; Florent Schaffhauser Group actions on quiver varieties and applications, Internat. J. Math., Volume 30 (2019) no. 02, 1950007, 46 pages | DOI | MR | Zbl
[14] Chiu-Chu Liu; Florent Schaffhauser The Yang–Mills equations over Klein surfaces, J. Topol., Volume 6 (2013) no. 3, pp. 569-643 | DOI | MR | Zbl
[15] Vikram B. Mehta; Conjeeveram S. Seshadri Moduli of vector bundles on curves with parabolic structures, Math. Ann., Volume 248 (1980) no. 3, pp. 205-239 | DOI | MR | Zbl
[16] David Mumford Projective invariants of projective structures and applications, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, 1963, pp. 526-530 | MR | Zbl
[17] Mudumbai S. Narasimhan; Conjeeveram S. Seshadri Holomorphic vector bundles on a compact Riemann surface, Math. Ann., Volume 155 (1964), pp. 69-80 | DOI | MR | Zbl
[18] Mudumbai S. Narasimhan; Conjeeveram S. Seshadri Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., Volume 82 (1965), pp. 540-567 | DOI | MR | Zbl
[19] Johan Råde On the Yang–Mills heat equation in two and three dimensions, J. Reine Angew. Math., Volume 431 (1992), pp. 123-163 | DOI | MR | Zbl
[20] Sundararaman Ramanan Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci., Math. Sci., Volume 90 (1981) no. 2, pp. 151-166 | DOI | MR | Zbl
[21] A. Ramanathan Stable principal bundles on a compact Riemann surface, Math. Ann., Volume 213 (1975), pp. 129-152 | DOI | MR | Zbl
[22] A. Ramanathan; Swaminathan Subramanian Einstein–Hermitian connections on principal bundles and stability, J. Reine Angew. Math., Volume 390 (1988), pp. 21-31 | MR | Zbl
[23] Florent Schaffhauser Real points of coarse moduli schemes of vector bundles on a real algebraic curve, J. Symplectic Geom., Volume 10 (2012) no. 4, pp. 503-534 | DOI | MR | Zbl
[24] Florent Schaffhauser On the Narasimhan–Seshadri correspondence for Real and Quaternionic vector bundles, J. Differ. Geom., Volume 105 (2017) no. 1, pp. 119-162 | MR | Zbl
[25] Conjeeveram S. Seshadri Space of unitary vector bundles on a compact Riemann surface, Ann. Math., Volume 85 (1967), pp. 303-336 | DOI | MR | Zbl
[26] Isadore M. Singer The geometric interpretation of a special connection, Pac. J. Math., Volume 9 (1959), pp. 585-590 | DOI | MR | Zbl
Cited by Sources: