A note on the relation between Hartnell’s firefighter problem and growth of groups

Séminaire de théorie spectrale et géométrie, Volume 33 (2015-2016), pp. 55-60.

Published online:

DOI:
10.5802/tsg.314

Classification:
20F65, 43A07, 57M07, 05C57, 05C10, 05C25

Author's affiliations:

Eduardo Martínez-Pedroza ^{1}
^{1} Memorial University St. John’s Newfoundland A1C 5S7 (Canada)

@article{TSG_2015-2016__33__55_0, author = {Eduardo Mart{\'\i}nez-Pedroza}, title = {A note on the relation between {Hartnell{\textquoteright}s} firefighter problem and growth of groups}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {55--60}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, year = {2015-2016}, doi = {10.5802/tsg.314}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.314/} }

TY - JOUR AU - Eduardo Martínez-Pedroza TI - A note on the relation between Hartnell’s firefighter problem and growth of groups JO - Séminaire de théorie spectrale et géométrie PY - 2015-2016 SP - 55 EP - 60 VL - 33 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.314/ DO - 10.5802/tsg.314 LA - en ID - TSG_2015-2016__33__55_0 ER -

%0 Journal Article %A Eduardo Martínez-Pedroza %T A note on the relation between Hartnell’s firefighter problem and growth of groups %J Séminaire de théorie spectrale et géométrie %D 2015-2016 %P 55-60 %V 33 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.314/ %R 10.5802/tsg.314 %G en %F TSG_2015-2016__33__55_0

Eduardo Martínez-Pedroza. A note on the relation between Hartnell’s firefighter problem and growth of groups. Séminaire de théorie spectrale et géométrie, Volume 33 (2015-2016), pp. 55-60. doi : 10.5802/tsg.314. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.314/

[1] Laurent Bartholdi; Bálint Virág Amenability via random walks, Duke Math. J., Volume 130 (2005) no. 1, pp. 39-56 | DOI | MR | Zbl

[2] Itai Benjamini; Oded Schramm Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 403-419 | DOI | MR | Zbl

[3] Martin R. Bridson; André Haefliger Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR | Zbl

[4] Ching Chou Elementary amenable groups, Ill. J. Math., Volume 24 (1980) no. 3, pp. 396-407 http://projecteuclid.org/euclid.ijm/1256047608 | MR | Zbl

[5] Danny Dyer; Eduardo Martínez-Pedroza; Brandon Thorne The coarse geometry of Hartnell?s firefighter problem on infinite graphs, Discrete Math., Volume 340 (2017) no. 5, pp. 935-950 | Zbl

[6] Stephen Finbow; Bert L. Hartnell; Qiyan Li; Kyle Schmeisser On minimizing the effects of fire or a virus on a network, J. Comb. Math. Comb. Comput., Volume 33 (2000), pp. 311-322 | MR | Zbl

[7] Rostislav I. Grigorchuk On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, Volume 271 (1983) no. 1, pp. 30-33 | MR | Zbl

[8] Rostislav I. Grigorchuk; Andrzej Żuk On a torsion-free weakly branch group defined by a three state automaton, Int. J. Algebra Comput., Volume 12 (2002) no. 1-2, pp. 223-246 | DOI | MR | Zbl

[9] Andreas Thom Trees in groups of exponential growth MathOverflow question, http://mathoverflow.net/q/60011 (version: 2013-05-09)

[10] Joseph A. Wolf Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differ. Geom., Volume 2 (1968), pp. 421-446 | MR | Zbl

*Cited by Sources: *