Consider a compact Lie group and a closed subgroup . Suppose is a positive-definite -invariant (0,2)-tensor field on the homogeneous space . In this note, we state a sufficient condition for the existence of a -invariant Riemannian metric on whose Ricci curvature coincides with for some . This condition is, in fact, necessary if the isotropy representation of splits into two inequivalent irreducible summands. After stating the main result, we work out an example.
@article{TSG_2015-2016__33__47_0, author = {Mark Gould and Artem Pulemotov}, title = {Existence of homogeneous metrics with prescribed {Ricci} curvature}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {47--54}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, year = {2015-2016}, doi = {10.5802/tsg.313}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/} }
TY - JOUR AU - Mark Gould AU - Artem Pulemotov TI - Existence of homogeneous metrics with prescribed Ricci curvature JO - Séminaire de théorie spectrale et géométrie PY - 2015-2016 SP - 47 EP - 54 VL - 33 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/ DO - 10.5802/tsg.313 LA - en ID - TSG_2015-2016__33__47_0 ER -
%0 Journal Article %A Mark Gould %A Artem Pulemotov %T Existence of homogeneous metrics with prescribed Ricci curvature %J Séminaire de théorie spectrale et géométrie %D 2015-2016 %P 47-54 %V 33 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/ %R 10.5802/tsg.313 %G en %F TSG_2015-2016__33__47_0
Mark Gould; Artem Pulemotov. Existence of homogeneous metrics with prescribed Ricci curvature. Séminaire de théorie spectrale et géométrie, Volume 33 (2015-2016), pp. 47-54. doi : 10.5802/tsg.313. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/
[1] Stavros Anastassiou; Ioannis Chrysikos The Ricci flow approach to homogeneous Einstein metrics on flag manifolds, J. Geom. Phys., Volume 61 (2011), pp. 1587-1600 | Zbl
[2] Andreas Arvanitoyeorgos An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library, 22, American Mathematical Society, 2003, xvi+141 pages | DOI | MR | Zbl
[3] Christoph Böhm Homogeneous Einstein metrics and simplicial complexes, J. Differ. Geom., Volume 67 (2004) no. 1, pp. 79-165 http://projecteuclid.org/euclid.jdg/1099587730 | MR | Zbl
[4] Christoph Böhm; McKenzie Wang; Wolfgang Ziller A variational approach for compact homogeneous Einstein manifolds, Geom. Funct. Anal., Volume 14 (2004) no. 4, pp. 681-733 | DOI | MR | Zbl
[5] William Dickinson; Megan M. Kerr The geometry of compact homogeneous spaces with two isotropy summands, Ann. Global Anal. Geom., Volume 34 (2008) no. 4, pp. 329-350 | DOI | MR | Zbl
[6] Mark Gould; Ruibin Zhang Unitary representations of basic classical Lie superalgebras, Lett. Math. Phys., Volume 20 (1990) no. 3, pp. 221-229 | DOI | MR | Zbl
[7] Chenxu He Cohomogeneity one manifolds with a small family of invariant metrics, Geom. Dedicata, Volume 157 (2012), pp. 41-90 | DOI | MR | Zbl
[8] Victor G. Kac Lie superalgebras, Adv. Math., Volume 26 (1977) no. 1, pp. 8-96 | DOI | MR | Zbl
[9] Yurii Gennadyevich Nikonorov; Eugene D. Rodionov; Viktor V. Slavskiĭ Geometry of homogeneous Riemannian manifolds, J. Math. Sci. (N.Y.), Volume 146 (2007) no. 6, pp. 6313-6390 | DOI | MR | Zbl
[10] Artem Pulemotov Metrics with prescribed Ricci curvature on homogeneous spaces, J. Geom. Phys., Volume 106 (2016), pp. 275-283 | DOI | MR | Zbl
[11] Artem Pulemotov; Yanir A. Rubinstein Ricci iteration on homogeneous spaces (to appear in Trans. Am. Math. Soc.)
[12] McKenzie Wang; Wolfgang Ziller Existence and nonexistence of homogeneous Einstein metrics, Invent. Math., Volume 84 (1986) no. 1, pp. 177-194 | DOI | MR | Zbl
Cited by Sources: