Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Séminaire de théorie spectrale et géométrie
  • Volume 33 (2015-2016)
  • p. 47-54
  • Next
Existence of homogeneous metrics with prescribed Ricci curvature
Mark Gould1; Artem Pulemotov1
1 School of Mathematics and Physics The University of Queensland St Lucia, QLD 4072 (Australia)
Séminaire de théorie spectrale et géométrie, Volume 33 (2015-2016), pp. 47-54.
  • Abstract

Consider a compact Lie group G and a closed subgroup H<G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M=G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c>0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.

  • Article information
  • Export
  • How to cite
Published online: 2018-08-27
DOI: 10.5802/tsg.313
Author's affiliations:
Mark Gould 1; Artem Pulemotov 1

1 School of Mathematics and Physics The University of Queensland St Lucia, QLD 4072 (Australia)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2015-2016__33__47_0,
     author = {Mark Gould and Artem Pulemotov},
     title = {Existence of homogeneous metrics with prescribed {Ricci} curvature},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {47--54},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     year = {2015-2016},
     doi = {10.5802/tsg.313},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/}
}
TY  - JOUR
AU  - Mark Gould
AU  - Artem Pulemotov
TI  - Existence of homogeneous metrics with prescribed Ricci curvature
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2015-2016
SP  - 47
EP  - 54
VL  - 33
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/
DO  - 10.5802/tsg.313
LA  - en
ID  - TSG_2015-2016__33__47_0
ER  - 
%0 Journal Article
%A Mark Gould
%A Artem Pulemotov
%T Existence of homogeneous metrics with prescribed Ricci curvature
%J Séminaire de théorie spectrale et géométrie
%D 2015-2016
%P 47-54
%V 33
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/
%R 10.5802/tsg.313
%G en
%F TSG_2015-2016__33__47_0
Mark Gould; Artem Pulemotov. Existence of homogeneous metrics with prescribed Ricci curvature. Séminaire de théorie spectrale et géométrie, Volume 33 (2015-2016), pp. 47-54. doi : 10.5802/tsg.313. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.313/
  • References
  • Cited by

[1] Stavros Anastassiou; Ioannis Chrysikos The Ricci flow approach to homogeneous Einstein metrics on flag manifolds, J. Geom. Phys., Volume 61 (2011), pp. 1587-1600 | Zbl

[2] Andreas Arvanitoyeorgos An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library, 22, American Mathematical Society, 2003, xvi+141 pages | DOI | MR | Zbl

[3] Christoph Böhm Homogeneous Einstein metrics and simplicial complexes, J. Differ. Geom., Volume 67 (2004) no. 1, pp. 79-165 http://projecteuclid.org/euclid.jdg/1099587730 | MR | Zbl

[4] Christoph Böhm; McKenzie Wang; Wolfgang Ziller A variational approach for compact homogeneous Einstein manifolds, Geom. Funct. Anal., Volume 14 (2004) no. 4, pp. 681-733 | DOI | MR | Zbl

[5] William Dickinson; Megan M. Kerr The geometry of compact homogeneous spaces with two isotropy summands, Ann. Global Anal. Geom., Volume 34 (2008) no. 4, pp. 329-350 | DOI | MR | Zbl

[6] Mark Gould; Ruibin Zhang Unitary representations of basic classical Lie superalgebras, Lett. Math. Phys., Volume 20 (1990) no. 3, pp. 221-229 | DOI | MR | Zbl

[7] Chenxu He Cohomogeneity one manifolds with a small family of invariant metrics, Geom. Dedicata, Volume 157 (2012), pp. 41-90 | DOI | MR | Zbl

[8] Victor G. Kac Lie superalgebras, Adv. Math., Volume 26 (1977) no. 1, pp. 8-96 | DOI | MR | Zbl

[9] Yurii Gennadyevich Nikonorov; Eugene D. Rodionov; Viktor V. Slavskiĭ Geometry of homogeneous Riemannian manifolds, J. Math. Sci. (N.Y.), Volume 146 (2007) no. 6, pp. 6313-6390 | DOI | MR | Zbl

[10] Artem Pulemotov Metrics with prescribed Ricci curvature on homogeneous spaces, J. Geom. Phys., Volume 106 (2016), pp. 275-283 | DOI | MR | Zbl

[11] Artem Pulemotov; Yanir A. Rubinstein Ricci iteration on homogeneous spaces (to appear in Trans. Am. Math. Soc.)

[12] McKenzie Wang; Wolfgang Ziller Existence and nonexistence of homogeneous Einstein metrics, Invent. Math., Volume 84 (1986) no. 1, pp. 177-194 | DOI | MR | Zbl

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us