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A NOTE ON THE RELATION BETWEEN HARTNELL’S
FIREFIGHTER PROBLEM AND GROWTH OF

GROUPS

Eduardo Martínez-Pedroza

Abstract. — The firefighter game problem on locally finite connected graphs
was introduced by Bert Hartnell [6]. The game on a graph G can be described as
follows: let fn be a sequence of positive integers; an initial fire starts at a finite set
of vertices; at each (integer) time n > 1, fn vertices which are not on fire become
protected, and then the fire spreads to all unprotected neighbors of vertices on fire;
once a vertex is protected or is on fire, it remains so for all time intervals. The
graph G has the fn-containment property if every initial fire admits an strategy
that protects fn vertices at time n so that the set of vertices on fire is eventu-
ally constant. If the graph G has the containment property for a sequence of the
form fn = Cnd, then the graph is said to have polynomial containment. In [5],
it is shown that any locally finite graph with polynomial growth has polynomial
containment; and it is remarked that the converse does not hold. That article also
raised the question of whether the equivalence of polynomial growth and polyno-
mial containment holds for Cayley graphs of finitely generated groups. In this short
note, we remark how the equivalence holds for elementary amenable groups and
for non-amenable groups from results in the literature.

Let G be a connected and locally finite graph, and let d be a non-
negative integer. The graph G satisfies a polynomial containment of degree
at most d if there exists a constant C > 0 such that any finite subset X0 of
vertices of G admits a {Cnd}-containment strategy, i.e., there is a sequence
{Wk : k > 1} of subsets of vertices of G such that

(1) for every n > 1, the set Wn has cardinality at most Cnd,
(2) the sets Xn and Wn+1 are disjoint for n > 0, where Xn for n > 0 is

defined as the set of vertices at distance less than or equal to one
of Xn−1 and do not belong to W1 ∪ · · · ∪Wn.

(3) there is an integer T > 0 such that Xn = XT for every n > T .
This definition can be interpreted as the existence of winning strategies

for a single player game: a fire starts at an arbitrary finite set of vertices
X0, at each time interval the fire spreads to all unprotected vertices that
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neighbor vertices on fire, and Xn is the set of vertices on fire at time n;
the player aims to contain the fire by protecting at time n a set Wn of at
most Cnd vertices that are not on fire; once a vertex is protected or is on
fire, it remains so for all time intervals. The graph G satisfies polynomial
containment of degree at most d if there is C > 0 such that for any initial
fire X0 the player has an {Cnd}-strategy to contain the fire.
The notion of edge-path in a graph G defines a metric on the set of ver-

tices by declaring distG(x, y) to be the length of the shortest path from x

to y. The metric dist on the set of vertices of G is called the combinatorial
metric on G. The notion of quasi-isometry is an equivalence relation be-
tween metric spaces which plays a significant role in the study of discrete
groups, for a definition and overview see [3].

Theorem 1 ([5, Theorem 8]). — In the class of connected graphs with
bounded degree, the property of having polynomial containment of degree
at most d is preserved by quasi-isometry.

For a connected and locally finite graph G with a chosen vertex g0, let
β(n) denote the number of vertices at distance at most n from g0. Recall
that the function β : N→ N is called the growth function of G with respect
to g0. A graph G has polynomial growth of degree at most d if there is a
constant C > 0 such that β(n) 6 Cnd for each integer n. It is an exercise
to show that having polynomial growth of degree 6 d is independent of the
base vertex g0. Moreover, in the class of connected graphs with bounded
degree, it is a quasi-isometry invariant [3].

The following relation between polynomial growth and polynomial con-
tainment can be used to provide examples of graphs with polynomial con-
tainment.

Theorem 2 ([5, Theorem 3]). — Let G be a connected graph with
polynomial growth of degree d. Then G has polynomial containment of
degree at most max{0, d− 2}.

Remark 3. — The converse of Theorem 2 does not hold, there are con-
nected graphs of bounded degree with subexponential growth and constant
containment, see [5, Example 2.7]. The examples in the cited paper are
graphs of bounded degree with infinitely many vertices that separate the
graph into a finite subgraph and an infinite subgraph.

In contrast, examples of locally finite infinite graphs without polyno-
mial containment can be exhibited using the following proposition. By a
δ-regular tree, we mean an infinite tree such that every vertex has degree
exactly δ.
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Proposition 4 ([5, Corollary 11]). — If a graph G contains a subgraph
quasi-isometric to the infinite δ-regular tree with δ > 3, then G does not
satisfy a polynomial containment property.

For any finitely generated group G, any two Cayley graphs with respect
to finite generating sets are quasi-isometric. In view of Theorem 1, we say
that G has polynomial containment of degree d if the Cayley graph of G
with respect to a finite generating set has polynomial containment of degree
d; and we say that G has polynomial containment if it has polynomial
containment of degree d for some d. The question of whether the converse
of Theorem 2 holds for finitely generated groups was raised in [5].

Question 5 ([5, Question 12]). — In the class of finitely generated
groups, is having polynomial growth of degree d equivalent to having poly-
nomial containment of degree max{0, d− 2}?

This note discusses the following weaker version of the above question.

Question 6. — In the class of finitely generated groups, is having poly-
nomial growth equivalent to have polynomial containment?

In this note we observe that the answer is positive for elementary
amenable groups, and for non-amenable groups. Indeed, in the class of
finitely generated groups, polynomial containment implies amenability; and
in the class of finitely generated elementary amenable groups, polynomial
containment implies polynomial growth. Below we explain this statements.
Recall that the Cheeger constant h(G) of a locally finite graph G is

defined as
h(G) = inf

K

|∂K|
|K|

where K is any non-empty finite subset of vertices of G, and ∂K is the set
of edges of G with one endpoint in K and the other endpoint not in K.
A locally finite graph G is amenable if h(G) = 0, and otherwise is called
non-amenable. In the class of graphs with bounded degree, being amenable
is preserved by quasi-isometry; hence for a finitely generated group either
Cayley graphs with respect to finite generating sets are amenable, or all
are non-amenable. This yields the notions of amenable and non-amenable
in the class of finitely generated groups.

Theorem 7 ([2, Theorem 1.1]). — Any non-amenable locally finite
graph contains a tree with positive Cheeger constant.

Corollary 8. — Finitely generated groups with polynomial contain-
ment are amenable.
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Proof. — Let Γ be a non-amenable finitely generated group, and G be
its Cayley graph with respect to a finite generating set. By Theorem 7,
the graph G contains a subgraph T which is a tree with positive Cheeger
constant. Observe that T is necessarily infinite; since T has bounded degree
and h(T ) > 0, it follows that there is an upper bound on the length of
embedded paths in T whose interior vertices have degree 2 in G. It follows
that T , and hence G, contains a subgraph quasi-isometric to the 3-regular
tree. Therefore Proposition 4 implies that G does not have polynomial
containment. �

The class of elementary amenable groups is the smallest class of groups
containing all finite groups and all abelian groups, and closed under taking
subgroups, quotients, extensions, and direct unions.

Theorem 9 ([4, Theorem 3.2′]). — A finitely generated elementary-
amenable group is either virtually nilpotent or contains a free semigroup
in two generators.

Corollary 10. — Finitely generated elementary amenable groups with
polynomial containment are virtually nilpotent and hence they have poly-
nomial growth.

Proof. — Let Γ be a finitely generated elementary amenable group, and
suppose that it is not virtually nilpotent. By Theorem 9, there are elements
a, b ∈ Γ generating a free semigroup S in two generators. Consider the
Cayley graph G of Γ with respect to a finite generating set containing a
and b. Then the elements of S span a subgraph T of G which is an infinite
rooted tree, the root is the identity element of G, and any other vertex has
degree 3. Observe that T is quasi-isometric to the 3-regular tree, and hence
Proposition 4 implies that G does not have polynomial containment.

The result follows by invoking Wolf’s result that finitely generated vir-
tually nilpotent groups have polynomial growth [10]. �

From Corollaries 8 and 10, it follows that polynomial growth is equivalent
to polynomial containment in the class of finitely generated groups that
are elementary amenable or non-amenable. The class of non-elementary
amenable groups has been a subject of intense study since it was shown
in the 1980’s that the class is non-empty with the appearance of Grig-
orchuk’s group of intermediate growth [7]. The class of non-elementary
amenable groups contains groups of intermediate growth as wells as groups
of exponential growth. An example of a non-elementary amenable group
of exponential growth is the Basilica group; the group was introduced by
Grigorchuk and Zuk [8] where they proved that it has exponential growth
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and it does not belong to the class of elementary amenable groups; the
proof that the group is amenable was found by Bartholdi and Virag [1].
It is conceivable that Proposition 4 can be used to show that groups of
exponential growth have no polynomial containment, in other words, that
the following folk question has a positive answer. A small variation of this
question was asked by A. Thom [9].

Question 11. — Let G be a finitely generated non-elementary amen-
able group of exponential growth, and let S be a finite generating set.
Does the Cayley graph of G with respect to S contains a tree with positive
Cheeger constant?

Since the Cayley graph of a group of intermediate growth cannot contain
a tree with positive Cheeger constant, answering Question 6 is a more subtle
question.

Remark 12. — Laurent Bartholdi remarked that weakly branched
groups have superpolynomial containment, and he conjectured that their
minimal firefighting sequence has grow as exp(

√
n). A weakly branched

group G contains a subgroup H that contains H × H as a proper sub-
group; hence H is an infinite subgroup and the Cayley graph of G contains
a d-dimensional grid up to quasi-isometry. Therefore G must have contain-
ment of at least polynimial degree d− 2 for all d.
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