This survey reviews some facts about about the representation and character varieties of knot groups into with are presented. This concerns mostly joint work of the author with L. Ben Abdelghani, O. Medjerab, V. Muños and J. Porti.
@article{TSG_2014-2015__32__137_0, author = {Michael Heusener}, title = {Some recent results about the $\mathrm{SL}_n(\mathbb{C})${\textendash}representation spaces of knot groups}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {137--161}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, year = {2014-2015}, doi = {10.5802/tsg.307}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.307/} }
TY - JOUR AU - Michael Heusener TI - Some recent results about the $\mathrm{SL}_n(\mathbb{C})$–representation spaces of knot groups JO - Séminaire de théorie spectrale et géométrie PY - 2014-2015 SP - 137 EP - 161 VL - 32 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.307/ DO - 10.5802/tsg.307 LA - en ID - TSG_2014-2015__32__137_0 ER -
%0 Journal Article %A Michael Heusener %T Some recent results about the $\mathrm{SL}_n(\mathbb{C})$–representation spaces of knot groups %J Séminaire de théorie spectrale et géométrie %D 2014-2015 %P 137-161 %V 32 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.307/ %R 10.5802/tsg.307 %G en %F TSG_2014-2015__32__137_0
Michael Heusener. Some recent results about the $\mathrm{SL}_n(\mathbb{C})$–representation spaces of knot groups. Séminaire de théorie spectrale et géométrie, Volume 32 (2014-2015), pp. 137-161. doi : 10.5802/tsg.307. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.307/
[1] Michael Artin On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291 | MR | Zbl
[2] Leila Ben Abdelghani Espace des représentations du groupe d’un nœud classique dans un groupe de Lie, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 4, pp. 1297-1321 | MR | Zbl
[3] Leila Ben Abdelghani Tangent cones and local geometry of the representation and character varieties of knot groups, Algebr. Geom. Topol., Volume 10 (2010) no. 1, pp. 433-463 | DOI | MR | Zbl
[4] Leila Ben Abdelghani; Michael Heusener Irreducible representations of knot groups into SL(n,C) (2015) (to appear in Publicacions Matemàtiques, https://arxiv.org/abs/1111.2828)
[5] Leila Ben Abdelghani; Michael Heusener; Hajer Jebali Deformations of metabelian representations of knot groups into , J. Knot Theory Ramifications, Volume 19 (2010) no. 3, pp. 385-404 | DOI | MR | Zbl
[6] Nicolas Bergeron; Elisha Falbel; Antonin Guilloux Tetrahedra of flags, volume and homology of , Geom. Topol., Volume 18 (2014) no. 4, pp. 1911-1971 | DOI | MR
[7] Hans U. Boden; Stefan Friedl Metabelian representations of knot groups, Pacific J. Math., Volume 238 (2008) no. 1, pp. 7-25 | DOI | MR | Zbl
[8] Hans U. Boden; Stefan Friedl Metabelian representations of knot groups, III: deformations, Q. J. Math., Volume 65 (2014) no. 3, pp. 817-840 | MR
[9] Kenneth S. Brown Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, 1994, pp. x+306 (Corrected reprint of the 1982 original) | MR | Zbl
[10] Michelle Bucher; Marc Burger; Alessandra Iozzi Rigidity of representations of hyperbolic lattices into (2014) (https://arxiv.org/abs/1412.3428)
[11] Gerhard Burde; Heiner Zieschang; Michael Heusener Knots, Berlin: Walter de Gruyter, 2013, pp. xiii + 417 | MR | Zbl
[12] Marc Culler; Peter B. Shalen Varieties of group representations and splittings of -manifolds, Ann. Math., Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl
[13] Martin Deraux A 1-parameter family of spherical CR uniformizations of the figure eight knot complement (2014) (https://arxiv.org/abs/1410.1198)
[14] Martin Deraux On spherical CR uniformization of 3-manifolds (2014) (https://arxiv.org/abs/1410.0659) | MR
[15] Martin Deraux; Elisha Falbel Complex hyperbolic geometry of the figure-eight knot, Geom. Topol., Volume 19 (2015) no. 1, pp. 237-293 | DOI | MR
[16] Tudor T. Dimofte; M. Gabella; Alexander B. Goncharov K-Decompositions and 3d Gauge Theories (2013) (https://arxiv.org/abs/1301.0192)
[17] Tudor T. Dimofte; Stavros Garoufalidis The quantum content of the gluing equations (2012) (https://arxiv.org/abs/1202.6268) | MR
[18] Igor Dolgachev Lectures on invariant theory, London Mathematical Society Lecture Note Series, 296, Cambridge University Press, Cambridge, 2003, pp. xvi+220 | DOI | MR | Zbl
[19] Elisha Falbel; Antonin Guilloux; Pierre-Vincent Koseleff; Fabrice Rouillier; Morwen Thistlethwaite Character varieties for : the figure eight knot (2014) (https://arxiv.org/abs/1412.4711) | MR
[20] Vladimir Fock; Alexander B. Goncharov Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | MR | Zbl
[21] Charles D. Frohman; Eric Paul Klassen Deforming representations of knot groups in , Comment. Math. Helv., Volume 66 (1991) no. 3, pp. 340-361 | DOI | MR | Zbl
[22] William Fulton; Joe Harris Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, 1991, pp. xvi+551 (A first course, Readings in Mathematics) | DOI | MR | Zbl
[23] Stavros Garoufalidis; Mattias Goerner; Christian K. Zickert Gluing equations for PGL(n,C)-representations of 3-manifolds (2012) (https://arxiv.org/abs/1207.6711)
[24] Stavros Garoufalidis; Dylan P. Thurston; Christian K. Zickert The complex volume of SL(n,C)-representations of 3-manifolds (2011) (https://arxiv.org/abs/1111.2828) | MR
[25] Stavros Garoufalidis; Christian K. Zickert The symplectic properties of the PGL(n,C)-gluing equations (2013) (https://arxiv.org/abs/1310.2497)
[26] William M. Goldman The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984) no. 2, pp. 200-225 | DOI | MR | Zbl
[27] Francisco González-Acuña; José María Montesinos-Amilibia On the character variety of group representations in and , Math. Z., Volume 214 (1993) no. 4, pp. 627-652 | DOI | Zbl
[28] Cameron Gordon Dehn surgery and 3-manifolds, Low dimensional topology (IAS/Park City Math. Ser.), Volume 15, Amer. Math. Soc., Providence, RI, 2009, pp. 21-71 | MR | Zbl
[29] Christopher M. Herald Existence of irreducible representations for knot complements with nonconstant equivariant signature, Math. Ann., Volume 309 (1997) no. 1, pp. 21-35 | DOI | MR | Zbl
[30] Michael Heusener –representation spaces of knot groups, RIMS Kôkyûroku (2016) no. 1991, pp. 1-26 (http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1991-01.pdf)
[31] Michael Heusener; Jochen Kroll Deforming abelian -representations of knot groups, Comment. Math. Helv., Volume 73 (1998) no. 3, pp. 480-498 | DOI | MR | Zbl
[32] Michael Heusener; Ouardia Medjerab Deformations of reducible representations of knot groups into (2014) (to appear in Mathematica Slovaca, https://arxiv.org/abs/1402.4294)
[33] Michael Heusener; Vicente Muñoz; Joan Porti The -character variety of the figure eight knot. (2015) (to appear in Illinois Journal of Mathematics, https://arxiv.org/abs/1505.04451)
[34] Michael Heusener; Joan Porti Deformations of reducible representations of 3-manifold groups into , Algebr. Geom. Topol., Volume 5 (2005), pp. 965-997 | DOI | MR | Zbl
[35] Michael Heusener; Joan Porti Representations of knot groups into and twisted Alexander polynomials, Pacific J. Math., Volume 277 (2015) no. 2, pp. 313-354 | DOI | MR
[36] Michael Heusener; Joan Porti; Eva Suárez Peiró Deformations of reducible representations of 3-manifold groups into , J. Reine Angew. Math., Volume 530 (2001), pp. 191-227 | DOI | MR | Zbl
[37] Irving Kaplansky An introduction to differential algebra, Actualités Sci. Ind., 1251, Hermann, 1957, pp. 63 | MR | Zbl
[38] Michael Kapovich Hyperbolic manifolds and discrete groups, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. xxviii+467 (Reprint of the 2001 edition) | DOI | MR | Zbl
[39] Michael Kapovich; John J. Millson On representation varieties of -manifold groups (2013) (https://arxiv.org/abs/1303.2347)
[40] Paul Kirk; Charles Livingston Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology, Volume 38 (1999) no. 3, pp. 635-661 | DOI | MR | Zbl
[41] Teruaki Kitano Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., Volume 174 (1996) no. 2, pp. 431-442 http://projecteuclid.org/getRecord?id=euclid.pjm/1102365178 | MR | Zbl
[42] Eric Paul Klassen Representations of knot groups in , Trans. Amer. Math. Soc., Volume 326 (1991) no. 2, pp. 795-828 | DOI | MR | Zbl
[43] Jerald J. Kovacic An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput., Volume 2 (1986) no. 1, pp. 3-43 | DOI | MR | Zbl
[44] Peter B. Kronheimer; Tomasz S. Mrowka Dehn surgery, the fundamental group and SU, Math. Res. Lett., Volume 11 (2004) no. 5-6, pp. 741-754 | DOI | MR | Zbl
[45] Sean Lawton Generators, relations and symmetries in pairs of unimodular matrices, J. Algebra, Volume 313 (2007) no. 2, pp. 782-801 | DOI | MR | Zbl
[46] Alexander Lubotzky; Andy R. Magid Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Volume 58 (1985) no. 336, pp. xi+117 | DOI | MR | Zbl
[47] Pere Menal-Ferrer; Joan Porti Twisted cohomology for hyperbolic three manifolds, Osaka J. Math., Volume 49 (2012) no. 3, pp. 741-769 | MR | Zbl
[48] Pere Menal-Ferrer; Joan Porti Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds, J. Topol., Volume 7 (2014) no. 1, pp. 69-119 | DOI | MR | Zbl
[49] Werner Müller The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry (Progr. Math.), Volume 297, Birkhäuser/Springer, Basel, 2012, pp. 317-352 | DOI | MR | Zbl
[50] Vicente Muñoz; Joan Porti Geometry of the -character variety of torus knots (2014) (https://arxiv.org/abs/1409.4784) | MR
[51] Athanase Papadopoulos Handbook of Teichmüller theory. Vol. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, European Mathematical Society (EMS), Zürich, 2009, pp. x+874 | DOI
[52] Claudio Procesi The invariant theory of matrices, Adv. Math., Volume 19 (1976) no. 3, pp. 306-381 | MR | Zbl
[53] Jean-Pierre Serre Linear representations of finite groups, Springer-Verlag, 1977, pp. x+170 (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR | Zbl
[54] Douglas J. Shors Deforming Reducible Representations of Knot Groups in ., U.C.L.A. (USA) (1991) (Ph. D. Thesis) | MR
[55] Adam S. Sikora Character varieties, Trans. Amer. Math. Soc., Volume 364 (2012) no. 10, pp. 5173-5208 | DOI | MR | Zbl
[56] Tonny A. Springer Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin, 1977, pp. iv+112 | MR | Zbl
[57] William P. Thurston The Geometry and Topology of Three-Manifolds (1980) (Notes of Princeton University, http://library.msri.org/books/gt3m/)
[58] William P. Thurston Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl
[59] Masaaki Wada Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994) no. 2, pp. 241-256 | DOI | MR | Zbl
[60] Masaaki Wada Twisted Alexander polynomial revisited, RIMS Kôkyûroku (2010) no. 1747, pp. 140-144
[61] André Weil Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157 | MR | Zbl
[62] Pierre Will Groupes libres, groupes triangulaires et tore épointé dans PU(2,1), Université Pierre et Marie Curie – Paris VI (France) (2006) (Ph. D. Thesis)
Cited by Sources: