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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 32 (2014-2015) 137-161

SOME RECENT RESULTS ABOUT THE
SLn(C)–REPRESENTATION SPACES OF KNOT

GROUPS

Michael Heusener

Abstract. — This survey reviews some facts about about the representation
and character varieties of knot groups into SLn(C) with n > 3 are presented. This
concerns mostly joint work of the author with L. Ben Abdelghani, O. Medjerab,
V. Muños and J. Porti.

1. Introduction

Since the foundational work of Thurston [57, 58] and Culler and
Shalen [12], the varieties of representations and characters of three-manifold
groups in SL2(C) have been intensively studied, as they reflect geometric
and topological properties of the three-manifold. In particular they have
been used to study knots k ⊂ S3, by analysing the SL2(C)-character va-
riety of the fundamental group of the knot complement S3 − k (these are
called knot groups).
Much less is known about the character varieties of three-manifold groups

in other Lie groups, notably for SLn(C) with n > 3. There has been an in-
creasing interest for those in the last years. For instance, inspired by the A-
coordinates in higher Teichmüller theory of Fock and Goncharov [20], some
authors have used the so called Ptolemy coordinates for studying spaces of
representations, based on subdivisions of ideal triangulations of the three-
manifold. Among others, we mention the work of Dimofty, Gabella, Garo-
ufalidis, Goerner, Goncharov, Thurston, and Zickert [16, 17, 23, 24, 25].
Geometric aspects of these representations, including volume and rigidity,
have been addressed by Bucher, Burger, and Iozzi in [10], and by Bergeron,
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138 MICHAEL HEUSENER

Falbel, and Guilloux in [6], who view these representations as holonomies of
marked flag structures. We also recall the work Deraux and Deraux–Falbel
in [13, 14, 15] to study CR and complex hyperbolic structures.
An extended version of this survey which contains more explanations

and examples is published in the RIMS Kôkyûroku lecture series [30].

2. Definitions

Definition 2.1. — Let k ⊂ S3 be a smooth knot. The knot exterior
is the compact manifold C := C(k) = S3 \ V (k) where V (k) is a tubular
neighborhood of k. The knot group is Γk := π1(C).

In what follows we will make use of the following properties of knot
groups:

• We have H1(C(k);Z) ∼= Z. A canonical surjection ϕ : Γk → Z is
given by ϕ(γ) = lk(γ, k) where lk denotes the linking number in S3

(see [11, 3.B]).
• The knot exterior is aspherical: we have πn(C(k)) = 0 for n > 1 i.e.
C(k) is an Eilenberg–MacLane space K(Γk, 1) (see [11, 3.F]). As a
cosequence, the (co-)homology groups of Γ and C(k) are naturally
identified, and for a given Γk-module M we have H∗(C(k);M) ∼=
H∗(Γk;M), and H∗(C(k);M) ∼= H∗(Γk;M).

It follows that every abelian representation factors through ϕ : Γk → Z.
Here we call ρ abelian if its image is abelian. We obtain for each non-zero
complex number η ∈ C∗ an abelian representation ηϕ : Γk → GL(1,C) =
C∗ given by γ 7→ ηϕ(γ).

2.1. Representation and character varieties

The general reference for representation and character varieties is
Lubotzky’s and Magid’s book [46]. Let Γ = 〈γ1, . . . , γm〉 be a finitely gen-
erated group.

Definition 2.2. — A SLn(C)-representation is a homomorphism
ρ : Γ→ SLn(C). The SLn(C)-representation variety is

Rn(Γ) = Hom(Γ,SLn(C)) ⊂ SLn(C)m ⊂Mn(C)m ∼= Cn
2m .
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SLn(C)–REPRESENTATION SPACES OF KNOT GROUPS 139

The representation variety Rn(Γ) is an affine algebraic set. It is contained
in SLn(C)m via the inclusion ρ 7→

(
ρ(γ1), . . . , ρ(γm)

)
, and it is the set of

solutions of a system of polynomial equations in the matrix coefficients.
Given two representations ρ1 : Γ → GLm(C) and ρ2 : Γ → GLn(C) we

define the direct sum ρ1 ⊕ ρ2 : Γ → GLm+n(C) and the tensor product
ρ1 ⊗ ρ2 : Γ→ GLmn(C). For γ ∈ Γ these representations are given by(
ρ1 ⊕ ρ2

)
(γ) =

(
ρ1(γ) 0

0 ρ2(γ)

)
and

(
ρ1 ⊗ ρ2

)
(γ) = ρ1(γ)⊗ ρ2(γ),

respectively. Here, A ⊗ B denotes the Kronecker product of A ∈ GLm(C)
and B ∈ GLn(C). The dual representation ρ∗ : Γ → GL(n) of ρ : Γ →
GL(n) is defined by ρ∗(γ) = tρ(γ)−1 where tA is the transpose of the
matrix A. (See also Lemme 5.6.)

Definition 2.3. — We call a representation ρ : Γ→ GLn(C) reducible
if there exists a nontrivial subspace V ⊂ Cn, 0 6= V 6= Cn, such that V is
ρ(Γ)-stable. The representation ρ is called irreducible if it is not reducible.
A semisimple representation is a direct sum of irreducible representations.

The group SLn(C) acts by conjugation on Rn(Γ). More precisely, for
A ∈ SLn(C) and ρ ∈ Rn(Γ) we define (A.ρ)(γ) = Aρ(γ)A−1 for all γ ∈ Γ.
Moreover, we let O(ρ) = {A.ρ | A ∈ SLn(C)} denote the orbit of ρ. In what
follows we will write ρ ∼ ρ′ if there exists A ∈ SLn(C) such that ρ′ = A.ρ,
and we will call ρ and ρ′ equivalent. For ρ ∈ Rn(Γ) we define its character
χρ : Γ→ C by χρ(γ) = tr(ρ(γ)). If ρ and ρ′ are equivalent then χρ = χρ′ .
The converse does not always hold and we have the following lemma:

Lemma 2.4. — Let ρ ∈ Rn(Γ) be a representation. The orbit O(ρ) is
closed if and only if ρ is semisimple. Moreover, let ρ, ρ′ be semisimple. Then
ρ ∼ ρ′ if and only if χρ = χρ′ .

Proof. — See Theorems 1.27 and 1.28 in Lubotzky’s and Magid’s
book [46]. �

The algebraic quotient or GIT quotient for the action of SLn(C) on
Rn(Γ) is called the character variety. This quotient will be denoted by
Xn(Γ) = Rn(Γ) // SLn(C). The character variety is not necessary an ir-
reducible affine algebraic set. For an introduction to algebraic invariant
theory see Dolgachev’s book [18]. Geometric invariant theory is concerned
with an algebraic action of a group G on an algebraic variety. For a point
v ∈ V the orbit Gv will be denoted by O(v). The action of G on V induces
an action of G on the coordinate algebra O(V ) of the variety V given by
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140 MICHAEL HEUSENER

g · f(v) = f(g−1v), for all g ∈ G, and v ∈ V . The invariant functions of the
G-action on V are

O(V )G = {f ∈ O(V ) | g · f = f for all g ∈ G} .

The commutative algebra O(V )G is interpreted as the algebra of functions
on the GIT quotient V //G. The main problem is to prove that the algebra
O(V )G is finitely generated. This is necessary if one wants the quotient
to be an affine algebraic variety. We are only interested in affine varieties
V and in reductive groups G. In this situation Nagata’s theorem applies
(see [18, Sec. 3.4]), and the algebra O(V )G is finitely generated. Reductive
groups include all finite groups and all classical groups (see [18, Chap. 3]).
If f1, . . . , fN generate the algebra O(V )G then a model for the quotient
is given by the image of the map t : V → V //G ⊂ CN given by t(v) =
(f1(v), . . . , fN (v)). The GIT quotient V //G parametrizes the set of closed
orbits (see [18, Corollary 6.1]).

Work of C. Procesi [52] implies that there exists a finite number of group
elements {γi | 1 6 i 6 M} ⊂ Γ such that the image of t : Rn(Γ) → CM
given by

t(ρ) =
(
χρ(γ1), . . . , χρ(γM )

)
can be identified with the affine algebraic set Xn(Γ) ∼= t(Rn(Γ)), see
also [46, p. 27]. This justifies the name character variety.

Examples 2.5.
(1) Let F2 be the free group on the two generators x and y. Then it

is possible to show that X2(F2) ∼= C3 and that t : R2(F2) → C3

is given by t(ρ) =
(
χρ(x), χρ(y), χρ(xy)

)
. See Goldman’s article [51,

Chap. 15] and the article of Gonzàlez-Acuña and Montesinos-
Amilibia [27] for more details.

(2) We obtain Xn(Z) ∼= Cn−1 More precisely, Rn(Z) ∼= SLn(C) and
t : Rn(Z) → Cn−1 maps the matrice A ∈ SLn(C) onto the coeffi-
cients of the characteristic polynomial of A (see [18, Example 1.2]).

(3) Explicit coordinates for X3(F2) are also known: X3(F2) is isomor-
phic to a degree 6 affine hyper-surface in C9 (see S. Lawton [45]
and P. Will [62]).

(4) If Γ is a finite group then Xn(Γ) is finite for all n. This follows
since Γ has up to equivalence only finitely many irreducible repre-
sentations, and every representation of a finite group is semisimple
(see [53]).
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SLn(C)–REPRESENTATION SPACES OF KNOT GROUPS 141

2.2. Tangent spaces and group cohomology.

The general reference for group cohomology is Brown’s book [9]. In order
to shorten notation we will sometimes write SL(n) and sl(n) instead of
SLn(C), and sln(C).
The following construction was presented by A. Weil [61]. For ρ ∈ Rn(Γ)

the Lie algebra sl(n) turns into a Γ-module via Ad ◦ρ, i.e. for X ∈ sl(n) and
γ ∈ Γ we have γ ·X = Adρ(γ)(X) = ρ(γ)Xρ(γ)−1. In what follows this Γ-
module will be denoted by sl(n)Ad ρ. We obtain an inclusion TZarRn(Γ) ↪→
Z1(Γ, sl(n)Ad ρ): for a smooth family of representations ρt with ρ0 = ρ we
obtain a map u : Γ→ sl(n) given by

(2.1) u(γ) = dρt(γ)
dt

∣∣∣
t=0

ρ(γ)−1 .

The map u verifies: u(γ1γ2) = u(γ1) + γ1 · u(γ2) i.e. u ∈ Z1(Γ, sl(n)Ad ρ) is
a cocycle or derivation in group cohomology. If ρt = AdAt ◦ρ is contained
in O(ρ) where At, A0 = In, is a path of matrices, then the corresponding
cocycle is a coboundary i.e. there exists X ∈ sl(n) such that u(γ) = (1 −
γ) ·X = X −Adρ(γ)(X).

In general, the inclusion TZarRn(Γ) ↪→ Z1(Γ, sl(n)Ad ρ) might be strict.
More precisely, the space Z1(Γ; sl(n)Ad ρ) is the Zariski tangent space to
the scheme R(Γ,SLn(C)) at ρ. For more details see [46] and [30, 2.3].

Definition 2.6. — Let ρ : Γ → SL(n) be a representation. A deriva-
tion u ∈ Z1(Γ; sl(n)Ad ρ) is called integrable if there exists a family of
representations ρt : Γ→ SL(n) such that ρ0 = ρ and (2.1) holds.

The following is a quite useful observation [46, p. iv] for detecting smooth
points of the representation variety. In general not every cocycle is inte-
grable and there are different reasons for this (see Remark 2.8). We have
the following inequalities

(2.2) dimρRn(Γ) 6 dimTZar
ρ Rn(Γ) 6 dimZ1(Γ, sl(n)Ad ρ)

where dimρRn(Γ) denotes the local dimension of Rn(Γ) at ρ i.e. the max-
imum of the dimensions of the irreducible components of Rn(Γ) contain-
ing ρ.

In what follows, will call ρ a regular or scheme smooth point of Rn(Γ)
if the equality dimρRn(Γ) = dimZ1(Γ, sl(n)Ad ρ) holds. In this case every
derivation is integrable, and we obtain the following:
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142 MICHAEL HEUSENER

Lemma 2.7 (see [36, Lemma 2.6]). — Let ρ ∈ Rn(Γ) be a representa-
tion. If ρ is regular, then ρ is a smooth point of the representation vari-
ety Rn(Γ), and ρ is contained in a unique component of Rn(Γ) of dimen-
sion dimZ1(Γ; sl(n)Ad ρ).
In general the relation between the cohomology group H1(Γ, sl(n)Ad ρ)

and the tangent space TZar
χρ Xn(Γ) is more complicate. However, if ρ is an

irreducible regular representation then we have for the character variety

TZar
χρ Xn(Γ) ∼= H1(Γ, sl(n)Ad ρ) .

(See [46, Lemma 2.18], and [55, Section 13] for a generalisation to com-
pletely reducible regular representations).
Remark 2.8. — There are examples such that

dimρRn(Γ) < dimZ1(Γ, sl(n)Ad ρ)

holds. In Example 2.13 of [30] a reducible representation ρ : D(3, 3, 3) →
SL(2) of the van Dyck group D(3, 3, 3) is given such that

dimρR2(D(3, 3, 3)) < dimTZar
ρ R2(D(3, 3, 3)) = dimZ1(Γ, sl(2)Ad ρ) .

Following Lubotzky and Magid [46, pp. 40–43] an example of a finitely
presented group Γ and a representation ρ : Γ → SL(2) is given in [30,
Example 2.18] such that

dimρR2(Γ) = dimTZar
ρ R2(Γ) < dimZ1(Γ, sl(2)Ad ρ)

holds.
Remark 2.9. — M. Kapovich and J. Millson proved in [39] that there are

essentially no restrictions on the local geometry of representation schemes
of 3-manifold groups to SL2(C).

3. The distinguished components and some examples

In general, not much is known about the global structure of the character
varieties of knot groups. In this section we will present some facts and some
examples.

Example 3.1 (Diagonal representations). — The characters of diago-
nal representations of a knot group Γk form an algebraic component of
Xn(Γk). A representation ρ : Γk → SL(n) which is the direct sum of one-
dimensional representations is equivalent to a diagonal representation. The
image of a diagonal representation is abelian. Hence it factors through
ϕ : Γk → Z. Therefore, the characters of diagonal representations coincide
with the characters Xn(Z) ↪→ Xn(Γk). Recall that Xn(Z) ∼= Cn−1.
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3.1. The distinguished components for hyperbolic knots

Let k ⊂ S3 be a hyperbolic knot i.e. S3 r k has a hyperbolic metric
of finite volume. There exists a unique one-dimensional component X0 ⊂
X(Γk,PSL(2,C)), up to complex conjugation, which contains the character
of the holonomy representation (see [38, Theorem 8.44]). Complex conju-
gation corresponds to changing the orientation of the three manifold, thus
there is a unique PSL(2,C)-character of the holonomy of an oriented knot
exterior. The holonomy representation lifts to a representation ρ : Γk →
SL(2) since H2(Γk;Z/2Z) = 0. The lift is not unique since H1(Γk;Z/2Z) ∼=
Z/2Z. By composing any lift of the holonomy representation with the ra-
tional, irreducible, n-dimensional representation rn : SL(2) → SL(n) we
obtain an irreducible representation ρn : Γk → SL(n). It follows from work
of P. Menal-Ferrer and J. Porti [47] that χρn ∈ Xn(Γk) is a scheme smooth
point contained in a unique (n− 1)-dimensional component of Xn(Γk). We
will call such a component a distinguished component of Xn(Γk). For odd
n, as rn ∼= Symn−1 : SL(2) → SL(r) factors through PSL(2), there is a
unique distinguished component in Xn(Γ).

3.2. Examples

The aim of this subsection is to describe the components of the SL(3)-
character varieties of the trefoil knot and the figure eight knot, see [33, 35].

3.2.1. Irreducible SL(3)-representations of the trefoil knot group

Let k ⊂ S3 be the trefoil knot and Γ = Γ31 . We use the presentation

Γ ∼= 〈x, y | x2 = y3〉 .

The center of Γ is the cyclic group generated by z = x2 = y3. The abelian-
ization map ϕ : Γ→ Z satisfies ϕ(x) = 3, ϕ(y) = 2, and a meridian of the
trefoil is given by m = xy−1. Let ω denote a primitive third root of unity,
ω2 + ω + 1 = 0.
For a given representation ρ ∈ R3(Γ) we put

ρ(x) = A and ρ(y) = B .

If ρ is irreducible then it follows from Schur’s Lemma that the matrix
A2 = B3 ∈ {id3, ω id3, ω

2 id3} is a central element of SL(3).

Lemma 3.2. — If ρ : Γ→ SL(3) is irreducible then A2 = B3 = id3.

VOLUME 32 (2014-2015)



144 MICHAEL HEUSENER

Proof. — The matrix A has an eigenvalue of multiplicity two, and hence
A has a two-dimensional eigenspace. Therefore, B has only one-dimensional
eigenspaces, otherwise ρ would not be irreducible. This implies that B has
three different eigenvalues: λ, λω, λω2 where λ3 ∈ {1, ω, ω2}. We obtain
det(B) = 1 = λ3. Therefore B3 = Id3. �

Lemma 3.2 implies that the matrices A and B are conjugate to

A ∼
( 1
−1
−1

)
and B ∼

( 1
ω
ω2

)
.

The corresponding eigenspaces are the plane EA(−1), and the lines EA(1),
EB(1), EB(ω), and EB(ω2).
Now, these eigenspaces determine the representation completely, as they

determine the matrices A and B, that have fixed eigenvalues. Of course
we have EA(1) ∩ EA(−1) = 0 and EB(1), EB(ω), and EB(ω2) are also in
general position. Since ρ is irreducible, the five eigenspaces are in general
position. For instance EA(1) ∩ (EB(1) ⊕ EB(ω)) = 0, because otherwise
EB(1)⊕EB(ω) = EA(1)⊕ (EA(−1)∩ (EB(1)⊕EB(ω))) would be a proper
invariant subspace.
We now give a parametrization of the conjugacy classes of the irreducible

representations. The invariant lines correspond to fixed points in the pro-
jective plane P2, and EA(−1) determines a projective line.

• The first normalization: the line EA(−1) corresponds to the line at
infinity:

P1 = EA(−1) = 〈[0 : 1 : 0], [0 : 0 : 1]〉

The four invariant lines EA(1), EB(1), EB(ω), and EB(ω2) are points in
the affine plane C2 = P2 \ P1. They are in general position.

• We fix the three fixed points of B, corresponding to the following
affine frame.

EB(1) = [1 : 0 : 0], EB(ω) = [1 : 1 : 0], and EB(ω2) = [1 : 0 : 1].

• The fourth point (the line EA(1)) is a point in C2 which does not
lie in the affine lines spanned by any two of the fixed points of B:
EA(1) = [2 : s : t] where s 6= 0, t 6= 0, or s+ t 6= 2

This gives rise to the subvariety {ρs,t ∈ R(Γ,SL(3)) | (s, t) ∈ C2}, where

ρs,t(x) =

1 0 0
s −1 0
t 0 −1

 and ρs,t(y) =

1 ω − 1 ω2 − 1
0 ω 0
0 0 ω2

 .

We obtain the following lemma:
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Lemma 3.3. — Every irreducible representation ρ : Γ31 → SL(3) is
equivalent to exactly one representation ρs,t. Moreover, ρs,t is reducible
if and only if (s, t) is contained in one of the three affine lines given by
s = 0, t = 0, and s + t = 2. If (s, t) ∈ {(0, 0), (0, 2), (2, 0)} is the intersec-
tion point of two of those lines then ρs,t fixes a complete flag, and has the
character of a diagonal representation.

The following theorem follows from the above considerations (see [35,
Theorem 9.10] for more details). We let Rirr

n (Γ) ⊂ Rn(Γ) denote the
Zariski-open subset of irreducible representation

Theorem 3.4. — The GIT quotient X = Rirr
3 (Γ) // SL(3) of the trefoil

knot group Γ is isomorphic to C2. Moreover, the Zariski open subset Rirr
3 (Γ)

is SL(3)-invariant and its GIT quotient is isomorphic to the complement of
three affine lines in general position in C2.

The affine algebraic set X3(Γ31) has the following components:
• the component containing the characters of abelian representations;
• one component containing the characters of partial reducible rep-
resentations i.e. representations of the form

ρλ = (α⊗ λϕ)⊕ λ−2ϕ

where α ∈ R2(Γ41) is irreducible (compare Equation (5.1) with β

trivial);
• one component containing characters of irreducible representations.
This component is isomorphic to C2.

Remark 3.5. — The same arguments as above apply to torus knots
T (p, 2), p odd, to prove that the variety of irreducible SL3(C)-characters
consist of (p− 1)(p− 2)/2 disjoint components isomorphic to C2, (p− 1)/2
components of characters of partial reducible representations, and the com-
ponent of characters of diagonal representations.
The SL(3)-character variety for torus knots was studied in detail by

V. Muñoz and J. Porti [50]. In the case T (p, q), p, q > 2, there are 4-
dimensional components in X3(ΓT (p,q)). These 4-dimensional components
correspond to the configuration of 6 points in the projective plane.

3.2.2. The SL(3)-character variety of the figure eight knot

The figure eight knot k = 41 has genus one, and its complement fibres
over the circle [11]. Hence the commutator group of Γ41 is a free group of

VOLUME 32 (2014-2015)



146 MICHAEL HEUSENER

rank two, and a presentation is given by

(3.1) Γ41
∼= 〈t, a, b | tat−1 = ab, tbt−1 = bab〉 ∼= F2 o Z

where F2 = F (a, b) is a free group of rank two. A peripheral system is given
by (m, `) = (t, [a, b]). The amphicheirality of the figure eight knot implies
that its group has an automorphism h : Γ→ Γ which maps the peripheral
system (m, `) to (m−1, `) up to conjugation. Such an automorphism is
explicitly given by

h(t) = ta−1t−1at−1 ∼ t−1,

h(a) = a−1tab−1a−1t−1a ∼ b−1,

h(b) = a−1tat−1a ∼ a .

Notice that we obtain

h(m) = ta−1m−1t−1a

h(`) = h([a, b]) = a−1ta[b−1, a]a−1t−1a.

The relation t−1a−1t = ba−2 gives that the peripheral system (h(m), h(`))
is conjugated to (m−1, `) as desired.
The structure of the SL(3)-character variety of the figure eight knot had

been studied in detail in [33], see also [19]. Here we outline the main steps
of the article [33].
To compute X irr

3 (Γ41) we look at the restriction map induced by the
inclusion F2 := F (a, b)→ Γ41 :

res : X3(Γ41)→ X3(F2) .

For X3(F2), we use Lawton’s and Will’s coordinates (see [45, 62]). There
is a two fold branched covering

π : X3(F2)→ C8,

where the coordinates of C8 are the traces of

(3.2) a, a−1, b, b−1, ab, b−1a−1, ab−1, a−1b.

The branched covering comes from a ninth coordinate, which is the trace
of the commutator [a, b] = aba−1b−1. This trace satisfies a polynomial
equation

x2 − Px+Q = 0,
where P and Q are polynomials on the first eight variables (see [45] for the
expression of P and Q). The solutions are precisely the trace of [a, b] and
the trace of its inverse.
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The computation of X irr
3 (Γ41) takes several steps (see [33]): first we com-

pute π(res(X(Γ, G))) ⊂ C8. From this we describe the image res(X(Γ, G))⊂
X3(F2) as a 2:1 ramified covering. Finally, we proved that X irr

3 (Γ41) is a
3:1 ramified covering of res(X3(Γ41)).
The computation of π(res(X(Γ, G))) ⊂ C8 is based on a reduction of

eight coordinates to four by using conjugation identities:

α = χ(a) = χ(ab), ᾱ = χ(a−1) = χ(b−1a−1),

β = χ(b) = χ(a−1b), β̄ = χ(b−1) = χ(ab−1).

Lemma 3.6. — The projection π(res(X(Γ, G))) has three components:

U0 = {(α, ᾱ, β, β̄) ∈ C4 | α = ᾱ, β = β̄},

U1 = {(α, ᾱ, β, β̄) ∈ C4 | α = ᾱ = 1},

U2 = {(α, ᾱ, β, β̄) ∈ C4 | β = β̄ = 1}.

The lemma is proved by elementary trace calculation in Lawton’s and
Will’s coordiantes (see [33, Lemma 5.1]).
To get all the ambient coordinates we need a new variable:

η(χ) = χ([a, b]) .

We know by [45] that

(3.3) η2 − Pη +Q = 0,

for some polynomials P,Q ∈ Z[α, β, ᾱ, β̄]. Using Lemma 3.6 and by replac-
ing the values of P and Q in [45], we obtain:

Lemma 3.7. — W = res(X(Γ, G)) has three components W0, W1 and
W2, each Wi being a two-fold ramified covering of Ui according to (3.3).

Now, it is proved in [33] that the ramification points of res : X irr
3 (Γ41)→

W are the characters of the five irreducible metabelian representations
Γ41 → SL(3). In [8] H. Boden and S. Friedl prove that these representations
are smooth points of X3(Γ41), and so X irr

3 (Γ41) has the same number of
components as W . Summarizing, we have:

Proposition 3.8. — The set X irr
3 (Γ41) has three components V0, V1

and V2, that are respective 3:1 branched covers of W0, W1 and W2.
The branching points in X irr

3 (Γ41) are the five metabelian irreducible
characters.

The character variety X3(Γ41) has 5 components:
• the component containing the characters of abelian representations;
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• one component containing the characters of the representations
ρλ = α ⊗ λϕ ⊕ λ−2ϕ where α ∈ R2(Γ41) is irreducible (compare
equation (5.1) with β trivial);

• three components V0, V1 and V2 containing characters of irreducible
representations. The component V0 is the distinguished component
(see Section 3.1). The two other components which come from a
surjection Γ41 � D(3, 3, 4) onto a triangle group.

Let us describe the components V1 and V2 without going too much into
the technical details. An epimorphism

φ : Γ� D(3, 3, 4) = 〈k, l | l3, k3, (kl)4〉

is given by

φ(a) = k−1l−1kl, φ(b) = kl and φ(t) = klk .

It satisfies φ(b)4 = 1 and φ(m3`) = 1. Notice that the surjection φ induces
an injection

φ∗ : X3(D(3, 3, 4)) ↪→ X3(Γ) .

Remark 3.9. — The surjection φ : Γ� D(3, 3, 4) is related to an excep-
tional Dehn filling on the figure-eight knot K (see [28]). In particular, the
Dehn filling manifold K(±3) is a small Seifert fibered manifold, and K(±3)
fibers over S2(3, 3, 4). The orbifold fundamental group πO1 (S2(3, 3, 4)) is iso-
morphic to the von Dyck group πO1 (S2(3, 3, 4)) ∼= D(3, 3, 4). Hence there is
a surjection

Γ→ π1(K(±3))� π1(K(±3))/center ∼= D(3, 3, 4) .

The center of π1(K(±3)) is generated by a regular fibre. Any irreducible
representation of π1(K(±3))→ SL(3) maps the fibre to the center of SL(3).
By using the description of X3(F2) given by Lawton [45]) it quite elemen-
tary to determine X3(D(3, 3, 4)) explicitly. The proof of the next lemma
can be found in [33, Lemma 10.1]:

Lemma 3.10. — The variety Xirr(D(3, 3, 4),SL(3,C)) has a component
W of dimension 2 and three isolated points. The variety W is isomorphic
to the hypersurface in C3 given by the equation

ζ2 − (νν̄ − 2)ζ + ν3 + ν̄3 − 5νν̄ + 5 = 0 .

Here, the parameters are ν = χ(k−1l), ν̄ = χ(kl−1) and ζ = χ([k, l]). For
every χ ∈ W, χ(k±1) = χ(l±1) = 0 and χ((kl)±1) = 1.
Moreover, all characters inW are characters of irreducible representations

except for the three points (ν, ν̄, ζ) = (2, 2, 1), (2$, 2$2, 1), (2$2, 2$, 1),
$ = e2πi/3.
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Now, the components V1 and V2 are given by

V1 = φ∗(W) ⊂ X3(Γ41) and V2 = (φ ◦ h)∗(W) .

The components V1 and V2 are swapped by h∗ : X3(Γ41)→ X3(Γ41), and
V0 is preserved.
Further details in the proof of Lemma 3.10 allow to describe those three

isolated points. Composing with φ∗, they correspond to the three characters
of irreducible metabelian representations in X3(Γ41) that do not lie in V2.
As already mentioned, there are five characters of irreducible metabelian
representations (see [7]), and the corresponding irreducible metabelian rep-
resentations are scheme smooth (see [8]). The character corresponding to
a point of V0 comes from a surjection Γ41 � A4 composed with the irre-
ducible representation A4 → SL(3).

Proposition 3.11. — The components V1 and V2 are characters of
representations which factor through the surjections Γ � π1(K(±3)) re-
spectively. These components are isomorphic to the hypersurface

ζ2 − (νν̄ − 2)ζ + ν3 + ν̄3 − 5νν̄ + 5 = 0.

Here, the parameters are

ν =
{
χ(t) for V2,
χ(t−1) for V1,

ν̄ =
{
χ(t−1) for V2,
χ(t) for V1,

ζ =
{
χ(a) for V2,
χ(b−1) for V1.

All characters are irreducible except for the three points(ν, ν̄, ζ) = (2, 2, 1),
(2$, 2$2, 1), (2$2, 2$, 1), with $ = e2πi/3, that correspond to the inter-
section V1 ∩ V2 = V0 ∩ V1 ∩ V2.

4. Deformations of representations

One way to prove that a certain representation ρ ∈ Rn(Γ) is a smooth
point of the representation variety is to show that every cocycle u ∈
Z1(Γ; sl(n)Ad ρ) is integrable (see Lemma 2.7). In order to do this, we use
the classical approach, i.e. we first solve the corresponding formal problem,
and then apply a theorem of Artin [1].
The formal deformations of a representation ρ : Γ → SLn(C) are in

general determined by an infinite sequence of obstructions (see [26, 2, 36]).
The following result streamlines the arguments given in [34] and [5]. It is a
slight generalization of Proposition 3.3 in [32]. For a proof see [30].
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Proposition 4.1. — Let M be a connected, compact, orientable 3-
manifold with toroidal boundary ∂M = T1 ∪ · · · ∪ Tk, and let ρ : π1M →
SL(n) be a representation.

If dimH1(π1M ; sl(n)Ad ρ) = k(n − 1) then ρ is a smooth point of the
SL(n)-representation varietyRn(π1M). Moreover, ρ is contained in a unique
component of dimension n2 − 1 + k(n− 1)− dimH0(π1M ; sl(n)Ad ρ).

Definition 4.2. — Let M , ∂M = T1 ∪ · · · ∪ Tk, be a connected, com-
pact, and orientable 3-manifold with toroidal boundary. A representation
ρ : π1M → SLn(C) is called infinitesimally regular if dimH1(π1M ;
sl(n)Ad ρ) = k(n− 1).

Remark 4.3. — It follows from Proposition 4.1 that infinitesimally reg-
ular representations are regular points on the representation variety.

Example 4.4. — Let Γk be a knot group and let D = diag(λ1, . . . , λn) ∈
SL(n) be a diagonal matrix. We define the diagonal representation ρD by
ρD(γ) = Dϕ(γ). Now, ρD is the direct sum of the one-dimensional repre-
sentations λϕi , and the Γk-module sl(n)Ad ρD decomposes as:

sl(n)Ad ρA =
⊕
i 6=j

Cλi/λj ⊕ Cn−1 .

Now, for all α ∈ C∗ we have H1(Γk;Cα) = 0 if and only if α 6= 1 and
∆k(α) 6= 0 (see [4, Lemma 2.3]). Here, ∆k(t) denotes the Alexander poly-
nomial of the knot k. Hence, ρD is infinitesimally regular if and only if
λi 6= λj for i 6= j and ∆k(λi/λj) 6= 0 for 1 6 i, j 6 n. In this case it follows
that dimH1(Γk; sl(n)Ad ρD ) = n − 1, and ρD ∈ Rn(Γk) is a regular point.
The representation ρD is contained in an unique component of dimension
n2−1. This component is exactly the component of abelian representations
ϕ∗ : Rn(Z) ↪→ Rn(Γk).

5. Existence of irreducible representations of knot groups

Let k ⊂ S3 be a knot, and let Γk be the knot group. Given represen-
tations of Γk into SL(2) there are several constructions which give higher
dimensional representations. The most obvious is probably the direct sum
of two representatios.

5.1. Deformations of the direct sum of two representations

Starting from two representations α : Γk → SLa(C) and β : Γk →
SLb(C) such that a + b = n, we obtain a family of representations ρλ ∈
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Rn(Γk), λ ∈ C∗, by ρλ = (λbϕ⊗α)⊕(λ−aϕ⊗β) ∈ Rn(Γk) i.e. for all γ ∈ Γk

(5.1) ρλ(γ) =
(
λbϕ(γ)α(γ) 0

0 λ−aϕ(γ)β(γ)

)
.

Recall that λϕ : Γk → C∗ is given by γ 7→ λϕ(γ).
Throughout this section we will assume that α and β are both irreducible

and infinitesimal regular.
The natural question which arises is if ρλ can be deformed to irreducible

representations, and if this would be possible what could we say about the
local structure of Xn(Γk) at χρλ?

5.1.1. The easiest case

A very special case is α = β : Γk → SL1(C) = {1} are trivial. Then
ρλ = λϕ ⊕ λ−ϕ ∈ R2(Γk) i.e. for all γ ∈ Γk

(5.2) ρλ(γ) =
(
λϕ(γ) 0

0 λ−ϕ(γ)

)
.

The following result goes back to work of E. Klassen [42].

Theorem 5.1. — If the diagonal representation ρλ ∈ R2(Γk) can be
deformed to irreducible representations then ∆k(λ2) = 0.

Proof. — The function Rn(Γ) → Z given by ρ 7→ dimZ1(Γ, sl(n)Ad ρ)
is upper-semi continuous. This means that for every m ∈ Z the set {ρ ∈
Rn(Γ) | dimZ1(Γ, sl(n)Ad ρ) > m} is closed. Notice that Z1(Γ, sl(n)Ad ρ) is
the kernel of a linear map which depends algebraically on ρ.

Moreover, if the representation ρλ ∈ R2(Γk) can be deformed into
irreducible representations then dimZ1(Γk, sl(2)Ad ρλ) > 4 (see [35, Lem-
ma 5.1]). The Γk-module sl(2)Ad ρλ

∼= C ⊕ Cλ2 ⊕ Cλ−2 decomposes into
one-dimensional modules (see Example 4.4). Now, H1(Γk,C) ∼= C and for
λ2 6= 1 we have B1(Γk,Cλ2) ∼= C. Hence, dimZ1(Γk, sl(2)Ad ρλ) > 4 implies
that H1(Γk,Cλ±2) 6= 0 or H1(Γk,Cλ−2) 6= 0.
Finally, H1(Γk,Cλ±2) 6= 0 and λ±2 6= 1 implies that ∆k(λ±2) = 0 (see

Example 4.4). �

Remark 5.2. — Notice that ∆k(t) .= ∆k(t−1) is symmetric and hence
H1(Γk,Cλ−2) 6= 0 if and only if H1(Γk,Cλ2) 6= 0. Here p .= q means that
p, q ∈ C[t±1] are associated elements, i.e. there exists some unit c tk ∈
C[t±1], with c ∈ C∗ and k ∈ Z, such that p = c tk q.
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In general, it is still a conjecture that the necessary condition in Theo-
rem 5.1 is also sufficient i.e. infinitesimal deformation implies deformation.
Nevertheless, we have the following result [36]:

Theorem 5.3. — Let k ⊂ S3 be a knot and let λ ∈ C∗. If λ2 is a simple
root of ∆k(t) then ρλ is the limit of irreducible representation.

More precisely, the character χλ of ρλ is contained in exactly two compo-
nents. One component Y2 ∼= C only contains characters of abelian (diagonal
representations), and the second component Xλ contains characters of ir-
reducible representations. Moreover, we have Y2 and Xλ intersect transver-
sally at χρ, and χλ is a smooth point on Y2 and Xλ.

Remark 5.4. — Related results, also for other Lie groups are: Shors [54],
Frohman–Klassen [21], Herald [29], Heusener–Kroll [31], Ben Abdelghani [2,
3], Heusener–Porti [34].

5.1.2. The general case.

Let us go back to the representation ρλ = (λbϕ⊗α)⊕(λ−aϕ⊗β) ∈ Rn(Γk)
given by Equation (5.1):

ρλ(γ) =
(
λbϕ(γ)α(γ) 0

0 λ−aϕ(γ)β(γ)

)
.

The following generalization of Theorem 5.1 was proved in [35]:

Theorem 5.5. — Let α : Γk → SLa(C) and β : Γk → SLb(C) be irre-
ducible, a + b = n, and assume that α and β are infinitesimal regular. If
ρλ ∈ Rn(Γk) is a limit of irreducible representations then ∆α⊗β∗

1 (λn) =
∆β⊗α∗

1 (λ−n) = 0.

The main steps in the proof of Theorem 5.5 agree with the main steps
in the proof of Theorem 5.1. Here we will only present the setup. First, let
us recall some facts about the twisted Alexander polynomial. For more
details see [35, 40, 41, 59, 60]. Let V be a complex vector space, and
ρ : Γk → GL(V ) a representation. We let C∞ → C denote the infinite
cyclic covering of the knot exterior. The twisted Alexander module is the
C[Z] ∼= C[t±1]-module Hi(C∞, V ). A generator ∆ρ

i (t) of its order ideal
is called the twisted Alexander polynomial ∆ρ

i (t) ∈ C[t±1]. Notice that
Hi(C∞, V ) ∼= Hi(C(k), V [Z]) ∼= Hi(Γk, V [Z]) where V [Z] = V ⊗C[Γ] C[Z] is
a Γk module via ρ⊗ tϕ.

The dual representation ρ∗ : Γ → GL(V ∗) is given by ρ∗(γ)(f) = f ◦
ρ(γ)−1 for f ∈ V ∗ = Hom(V,C) and γ ∈ Γ. In particular, if ρ : Γ→ GL(n)
then ρ∗(γ) = tρ(γ)−1 for all γ ∈ Γk.
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Lemma 5.6. — The representations ρ and ρ∗ are equivalent if and only
if there exists a Γ-invariant, non-degenerated bilinear form V ⊗ V → C.

Example 5.7. — If ρ : Γ→ O(n) or ρ : Γ→ SL2(C) then ρ and ρ∗ are
equivalent. For λ ∈ C∗ the dual of the one-dimensional representation λϕ
is (λϕ)∗ = λ−ϕ.

The following theorem is proved in [35]:

Theorem 5.8. — If ρ : Γk → GL(V ) is a semisimple representation
then ∆ρ∗

i (t) .= ∆ρ
i (t−1).

First, we have to understand the Γk-module sl(n)Ad ρλ . Let Ma,b(C) the
vector space of a × b matrices over the complex numbers. The group Γk
acts on Ma,b(C) via α⊗ β∗ i.e. for all γ ∈ Γk and X ∈Ma,b(C) we have

α⊗ β∗(γ)(X) = α(γ)Xβ(γ−1) .

Similarly, we obtain a representation β⊗α∗ : Γk →Mb,a(C). The proof of
the following lemma is given in [35]:

Lemma 5.9. — If α : Γk → SLa(C) and β : Γk → SLb(C) are irre-
ducible then the representation α∗ : Γk → SLa(C) is also irreducible. More-
over, α⊗ β and β ⊗ α∗ are semisimple.

In what follows we letM+
t andM−t denote the Γk-modules

M+
t = Ma,b(C)⊗ C[t, t−1] and M−t = Mb,a(C)⊗ C[t, t−1]

where Γk acts via α⊗ β∗ ⊕ tϕ and β ⊗ α∗ ⊗ tϕ repectively.

Corollary 5.10. — If α : Γk → SLa(C) and β : Γk → SLb(C) are
irreducible then

∆α⊗β∗
i (t) .= ∆β⊗α∗

i (t−1) .

Now, we are in the position to prove Theorem 5.13 by following the main
steps of the proof of Theorem 5.1. This is carried out in [35] (see also [30]).
Analogously to Theorem 5.3 there is also a partial converse to Theo-

rem 5.5 which was proved in [35] too.

Theorem 5.11. — Let α : Γk → SLa(C) and β : Γk → SLb(C) be
irreducible, a+ b = n, and assume that α and β are infinitesimal regular.
Assume that ∆α⊗β∗

0 (λn) 6= 0 and that λn is a simple root of ∆α⊗β∗
1 (t).

Then ρλ ∈ Rn(Γk) can be deformed to irreducible representations. More-
over, the character χλ ∈ Xn(Γk) belongs to precisely two irreducible com-
ponents Y and Z of Xn(Γ). Both components Y and Z have dimension
n− 1 and meet transversally at χλ along a subvariety of dimension n− 2.
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The component Y contains characters of irreducible representations and Z
consists only of characters of reducible ones.

To prove this theorem one make use of Luna’s Slice Theorem. Also on
has to study the quadratic cone of the representation ρλ by identifying the
second obstruction to integrability. This relies heavily on the hypothesis
about the simple root of the Alexander polynomial.

5.2. Deformation of reducible metabelian representations

In this subsection we will consider certain reducible metabelian repre-
sentations and their deformations. Irreducible metabelian representations
and their deformations had been studied by H. Boden and S. Friedl in a
series of papers (in particular see [7, 8]).

Here, the general assumption will be that α ∈ C∗ is a zero of the Alexan-
der polynomial of k, and hence H1(C∞;C) has a direct summand of the
form C[t±1]/(t− α)n−1, n ∈ Z, n > 1.

Recall that a knot group Γ is isomorphic to the semi-direct product
Γ ∼= Γ′ o Z. Every metabelian representation of Γ factors through the
metabelian group Γ/Γ′′ ∼= (Γ′/Γ′′)oZ. Notice thatH1(C∞;C) ∼= C⊗Γ′/Γ′′.
Hence we obtain a homomorphism

Γ→ (Γ′/Γ′′) o Z→ (C⊗ Γ′/Γ′′) o Z→ C[t±1]/(t− α)n−1 o Z .

The multiplication on C[t±1]/(t− α)n−1 o Z is given by (p1, n1)(p2, n2) =
(p1 + tn1p2, n1 + n2).
Let In ∈ SL(n) and Nn ∈ GL(n) denote the identity matrix and the

upper triangular Jordan normal form of a nilpotent matrix of degree n
respectively. For later use we note the following lemma which follows easily
from the Jordan normal form theorem:

Lemma 5.12. — Let α ∈ C∗ be a nonzero complex number and let Cn
be the C[t±1]-module with the action of tk given by

(5.3) tk a = αk a Jkn
where a ∈ Cn and Jn = In + Nn. Then Cn ∼= C[t±1]/(t − α)n as C[t±1]-
modules.

There is a direct method to construct a reducible metabelian represen-
tation of the group C[t±1]/(t − α)n−1 o Z into GL(n) (see [7, Proposi-
tion 3.13]). A direct calculation gives that

(a, 0) 7→
(

1 a
0 In−1

)
, (0, 1) 7→

(
α 0
0 J−1

n−1

)
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defines a faithful representation C[t±1]/(t− α)n−1 o Z→ GL(n).
Therefore, we obtain a reducible, metabelian, non-abelian representation

%̃ : Γ→ GL(n) if the Alexander module H1(C∞,C) has a direct summand
of the form C[t±1]

/
(t− α)s with s > n− 1 > 1:

%̃ : Γ→ C[t±1]
/

(t− α)s o Z→ C[t±1]
/

(t− α)n−1 o Z→ GL(n)

given by

(5.4) %̃(γ) =
(

1 z̃(γ)
0 In−1

)(
αϕ(γ) 0

0 J
−ϕ(γ)
n−1

)
.

It is easy to see that a map %̃ : Γ → GL(n) given by (5.4) is a homomor-
phism if and only if z̃ : Γ → Cn−1 is a cocycle i.e. for all γ1, γ2 ∈ Γ we
have

(5.5) z̃(γ1γ2) = z̃(γ1) + αϕ(γ1)z̃(γ2)Jϕ(γ1)
n−1 .

The unipotent matrices Jn and J−1
n are similar: a direct calculation shows

that PnJnP−1
n = J−1

n where Pn = (pij), pij = (−1)j
(
j
i

)
. The matrix Pn

is upper triangular with ±1 in the diagonal and P 2
n is the identity matrix,

and therefore Pn = P−1
n .

Hence %̃ is conjugate to a representation % : Γ→ GL(n) given by

(5.6) %(γ) =
(
αh(γ) z(γ)

0 J
h(γ)
n−1

)
=



αh(γ) z1(γ) z2(γ) . . . zn−1(γ)
0 1 h1(γ) . . . hn−2(γ)
...

. . . . . . . . .
...

...
. . . 1 h1(γ)

0 . . . . . . 0 1


where z = (z1, . . . , zn−1) : Γ→ Cn−1 satisfies

z(γ1γ2) = αh(γ1)z(γ2) + z(γ1)Jh(γ2)
n−1 .

It follows directly that z(γ) = z̃(γ)Pn−1J
h(γ)
n−1 and in particular z1 = −z̃1.

We choose an n-th root λ of α = λn and we define a reducible metabelian
representation %λ : Γ→ SL(n) by

(5.7) %λ(γ) = λ−ϕ(γ)%(γ).

The following theorem generalizes the results of [5] where the case n = 3
was investigated. It also applies in the case n = 2 which was studied in [2]
and [36, Theorem 1.1].

Theorem 5.13. — Let k be a knot in the 3-sphere S3. If the (t − α)-
torsion τα of the Alexander module H1(C;C[t±1]) is cyclic of the form
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C[t±1]
/

(t−α)n−1, n > 2, then for each λ ∈ C∗ such that λn = α there ex-
ists a reducible metabelian representation %λ : Γk → SL(n). Moreover, the
representation %λ is a smooth point of the representation variety Rn(Γ).
It is contained in a unique (n2 + n − 2)-dimensional component R%λ of
Rn(Γ) which contains irreducible non-metabelian representations which de-
form %λ.

The main part of the proof of this theorem is a cohomological calcula-
tion [4]: for the representation %λ : Γ→SL(n) we haveH0(Γ; sl(n)Ad ◦%λ)= 0
and

dimH1(Γ; sl(n)Ad ◦%λ) = dimH2(Γ; sl(n)Ad ◦%λ) = n− 1 .
Then we apply Proposition 4.1.

Remark 5.14. — Let ρλ : Γ → SL(n) be the diagonal representation
given by ρλ(m) = diag(λn−1, λ−1, . . . , λ−1) ∈ SL(n) where m is a meridian
of k. The orbit O(ρλ) of ρλ under the action of conjugation of SL(n) is
contained in the closure O(%λ). Hence %λ and ρλ project to the same point
χλ of the variety of characters Xn(Γk) = Rn(Γk) // SL(n).

It would be natural to study the local picture of the variety of characters
Xn(Γk) = Rn(Γk) // SL(n) at χλ as done in [34, §8]. Unfortunately, there
are much more technical difficulties since in this case the quadratic cone
Q(ρλ) coincides with the Zariski tangent space Z1(Γ; sl(n)Ad ρλ). Therefore
the third obstruction has to be considered.

5.3. The irreducible representation rn : SL(2)→ SL(n)

It is interesting to study the behavior of representations ρ ∈ R2(Γ) under
the composition with the n-dimensional, irreducible, rational representa-
tion rn : SL(2) → SL(n). The representation rn is equivalent to (n − 1)-
fold symmetric power Symn−1 of the standard representation (see [22, 56]
and [32] for more details). In particular, r1 is trivial, r2 is equivalent
to the standard representation, and r3 is equivalent to Ad : SL(2) →
O(sl(2)) ⊂ SL(3). If k is odd then rk is not injective since it factors trough
the projection SL(2) → PSL(2). W. Müller [49] studied the case where
ρ : π1(M) → SL(2) is the lift of the holonomy representation of a com-
pact hyperbolic manifold. This study was extended by P. Menal-Ferrer and
J. Porti [47, 48] to the case of non-compact finite volume hyperbolic man-
ifolds. (For more details see Section 3.1.)
In [32] the authors studied the case related to Theorem 5.3. Let Γk be

a knot group. We define ρn,λ : Γk → SL(n) by ρn,λ := rn ◦ ρλ where ρλ is
given by Equation (5.2).
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Proposition 5.15. — Let k ⊂ S3 be a knot, and assume that ρ0 : Γk →
SL(2) is irreducible. Then Rn(Γk) contains irreducible representations.

Proof. — It was proved by Thurston that there is at least a 4-dimensional
irreducible component R0 ⊂ R2(Γk) which contains the irreducible repre-
sentation ρ0 (see [12, 3.2.1]).

Let Γ be a discrete group and let ρ : Γ → SL(2) be an irreducible rep-
resentation. By virtue of Burnside’s Theorem on matrix algebras, being
irreducible is an open property for representations in Rn(Γ). If the image
ρ(Γ) ⊂ SL(2) is Zariski-dense then the representation ρn := rn ◦ ρ ∈ Rn(Γ)
is irreducible. In order to prove the proposition we will show that there
is a neighborhood U = U(ρ0) ⊂ R0 ⊂ R2(Γk) such that ρ(Γ) ⊂ SL(2) is
Zariski-dense for each irreducible ρ ∈ U .
Let now ρ : Γk → SL(2) be any irreducible representation and let G ⊂

SL(2) denote the Zariski-closure of ρ(Γk). Suppose that G 6= SL(2). Since
ρ is irreducible it follows that G is, up to conjugation, not a subgroup of
upper-triangular matrices of SL(2). Then by [43, Sec. 1.4] and [37, Theo-
rem 4.12] there are, up to conjugation, only two cases left:

• G is a subgroup of the infinite dihedral group

D∞ =
{(

α 0
0 α−1

) ∣∣α ∈ C∗
}
∪
{( 0 α
−α−1 0

) ∣∣α ∈ C∗
}
.

• G is one of the groups ASL(2)
4 (the tetrahedral group), SSL(2)

4 (the
octahedral group) or ASL(2)

5 (the icosahedral group). These groups
are the preimages in SL(2) of the subgroupsA4, S4,A5 ⊂ PSL(2,C).

By a result of E. Klassen [42, Theorem 10] there are up to conjuga-
tion only finitely many irreducible representations of a knot group into
D∞. Moreover, the orbit of each of those irreducible representation is 3-
dimensional. Therefore, there exists a Zariski-open subset U ⊂ R0 which
does not contain representations of Γk into D∞.
For the second case there are up to conjugation only finitely many

irreducible representations of Γk onto the subgroups ASL(2)
4 , SSL(2)

4 and
A

SL(2)
5 . As in the dihedral case these finitely many orbits are closed and

3-dimensional. Hence all the irreducible ρ ∈ R0 such that rn ◦ρ is reducible
are contained in a Zariski-closed subset of R0. Hence generically ρn = rn◦ρ
is irreducible for ρ ∈ R0. �

Remark 5.16. — Recall that a finite group has only finitely many ir-
reducible representations (see [22, 53]). Hence, the restriction of rn to the
groups ASL(2)

4 , SSL(2)
4 and A

SL(2)
5 is reducible, for all but finitely many

n ∈ N.
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For non-trivial knots there exist always irreducible representations of the
knot group to SU(2) ⊂ SL(2). This is a deep result of P. Kronheimer and
T. Mrowka [44]. Therefore, we obtain the following:

Corollary 5.17. — Let k ⊂ S3 be a non-trivial knot. Then Rn(Γk)
contains irreducible representations.

Let k ⊂ S3 be a knot, and let λ2 ∈ C a simple root of ∆k(t). We let
Rλ ⊂ Rn(Γk) denote the 4-dimensional component which maps onto the
component Xλ ⊂ X2(Γk) under t : Rn(Γ)→ Xn(Γ) (see Theorem 5.3). We
obtain:

Corollary 5.18. — Let k ⊂ S3 be a knot, and λ2 ∈ C a simple root of
∆k(t). Then the diagonal representation ρλ,n = rn ◦ρλ : Γk → SL(n) is the
limit of irreducible representations in Rn(Γk). More precisely, generically a
representation ρn = rn ◦ ρ, ρ ∈ Rλ, is irreducible.

Corollary 5.18 can be made more precise (see [32]):

Theorem 5.19. — If λ2 is a simple root of ∆k(t) and if ∆k(λ2i) 6= 0 for
all 2 6 i 6 n− 1 then the reducible diagonal representation ρλ,n = rn ◦ ρλ
is a limit of irreducible representations. More precisely, there is a unique
(n+ 2)(n− 1)-dimensional component Rλ,n ⊂ Rn(Γk) which contains ρλ,n
and irreducible representations.

Remark 5.20. — Under the assumptions of Corollary 5.18 it is possible
to study the tangent cone of Rn(Γk) at ρλ,n, and thereby to determine
the local structure of Rn(Γ). There are 2n−1 branches of various dimen-
sions of Rn(Γk) passing through ρλ. Nevertheless, only the component Rλ,n
contains irreducible representations. This will be studied in a forthcoming
paper.
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