For convex sets in the Lorentzian Minkowski space bounded by space-like hyperplanes, it is possible to define area measures, similarly to the classical definition for convex bodies in the Euclidean space. Here the measures are defined on the hyperbolic space rather than on the round sphere. We are particularly interested by convex sets invariant under the action of isometries groups of the Minkowski space, so that the measures can be defined on compact hyperbolic manifolds. We can then look at the Christoffel and the Minkowski problems (i.e. particular measures are prescribed) in a general setting. In dimension , the Christoffel problem include a famous construction by G. Mess. In this dimension, the smooth version of the Minkowski problem already had a positive answer, and we show that this is a specificity of dimension , while the general problem has a solution in all dimensions.
@article{TSG_2014-2015__32__97_0, author = {Fran\c{c}ois Fillastre}, title = {Christoffel and {Minkowski} problems in {Minkowski} space}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {97--114}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, year = {2014-2015}, doi = {10.5802/tsg.305}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.305/} }
TY - JOUR AU - François Fillastre TI - Christoffel and Minkowski problems in Minkowski space JO - Séminaire de théorie spectrale et géométrie PY - 2014-2015 SP - 97 EP - 114 VL - 32 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.305/ DO - 10.5802/tsg.305 LA - en ID - TSG_2014-2015__32__97_0 ER -
%0 Journal Article %A François Fillastre %T Christoffel and Minkowski problems in Minkowski space %J Séminaire de théorie spectrale et géométrie %D 2014-2015 %P 97-114 %V 32 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.305/ %R 10.5802/tsg.305 %G en %F TSG_2014-2015__32__97_0
François Fillastre. Christoffel and Minkowski problems in Minkowski space. Séminaire de théorie spectrale et géométrie, Volume 32 (2014-2015), pp. 97-114. doi : 10.5802/tsg.305. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.305/
[1] T. Barbot Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005) no. 2, pp. 123-165 | DOI | MR | Zbl
[2] T. Barbot; F. Béguin; A. Zeghib Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier (Grenoble), Volume 61 (2011) no. 2, pp. 511-591 | DOI | Numdam | MR | Zbl
[3] T. Barbot; F. Fillastre An assymmetric norm on (In preparation)
[4] C. Berg Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk., Volume 37 (1969) no. 6, pp. 64 pp. (1969) | MR | Zbl
[5] T. Bonnesen; W. Fenchel Theory of convex bodies, BCS Associates, Moscow, ID, 1987, pp. x+172 (Translated from the German and edited by L. Boron, C. Christenson and B. Smith) | MR | Zbl
[6] F. Bonsante Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differential Geom., Volume 69 (2005) no. 3, pp. 441-521 http://projecteuclid.org/getRecord?id=euclid.jdg/1122493997 | MR | Zbl
[7] F. Bonsante; F. Fillastre The equivariant Minkowski problem in Minkowski space (2014) (https://arxiv.org/abs/1405.4376v1)
[8] F. Bonsante; A. Seppi Spacelike convex surfaces with prescribed curvature in (2+1)-Minkowski space (2015) (https://arxiv.org/abs/1505.06748)
[9] Francesco Bonsante; Catherine Meusburger; Jean-Marc Schlenker Recovering the geometry of a flat spacetime from background radiation, Ann. Henri Poincaré, Volume 15 (2014) no. 9, pp. 1733-1799 | DOI | MR | Zbl
[10] G. Carlier On a theorem of Alexandrov, J. Nonlinear Convex Anal., Volume 5 (2004) no. 1, pp. 49-58 | MR | Zbl
[11] W. Fenchel; B. Jessen Mengenfunktionen und konvexe Körper., Danske Videnks. Selsk. Math.-fys. Medd., Volume 16 (1938) no. 3, pp. 1-31
[12] F. Fillastre Fuchsian convex bodies: basics of Brunn-Minkowski theory, Geom. Funct. Anal., Volume 23 (2013) no. 1, pp. 295-333 | DOI | MR | Zbl
[13] F. Fillastre; G. Veronelli Lorentzian area measures and the Christoffel problem (2013) (to appear Ann. Scuola Norm. Sup. Pisa Cl. Sci., https://arxiv.org/abs/1302.6169v1)
[14] C. Gutiérrez The Monge-Ampère equation, Progress in Nonlinear Differential Equations and their Applications, 44, Birkhäuser Boston Inc., Boston, MA, 2001, pp. xii+127 | DOI | Zbl
[15] A. Khovanskiĭ; V. Timorin On the theory of coconvex bodies, Discrete Comput. Geom., Volume 52 (2014) no. 4, pp. 806-823 | DOI | MR
[16] G. Mess Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI | MR | Zbl
[17] V. I. Oliker; U. Simon Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature, J. Reine Angew. Math., Volume 342 (1983), pp. 35-65 | MR | Zbl
[18] N. Trudinger; X.-J. Wang The Monge-Ampère equation and its geometric applications, Handbook of geometric analysis. No. 1 (Adv. Lect. Math. (ALM)), Volume 7, Int. Press, Somerville, MA, 2008, pp. 467-524 | MR
Cited by Sources: