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CHRISTOFFEL AND MINKOWSKI PROBLEMS IN
MINKOWSKI SPACE

François Fillastre

Abstract. — For convex sets in the Lorentzian Minkowski space bounded
by space-like hyperplanes, it is possible to define area measures, similarly to the
classical definition for convex bodies in the Euclidean space. Here the measures are
defined on the hyperbolic space rather than on the round sphere. We are particu-
larly interested by convex sets invariant under the action of isometries groups of
the Minkowski space, so that the measures can be defined on compact hyperbolic
manifolds. We can then look at the Christoffel and the Minkowski problems (i.e.
particular measures are prescribed) in a general setting. In dimension (2 + 1), the
Christoffel problem include a famous construction by G. Mess. In this dimension,
the smooth version of the Minkowski problem already had a positive answer, and
we show that this is a specificity of dimension (2 + 1), while the general problem
has a solution in all dimensions.

Contents

1. A Lorentzian Fenchel–Jensen formula 97
2. Analytical point of view 103
3. Group action 105
4. Solutions to the Christoffel problem 107
4.1. Equivariant solutions 107
4.2. Analysis versus geometry 109
5. Solutions to the Minkowski problem 110
5.1. Some results 110
5.2. The covolume 112
Bibliography 114

1. A Lorentzian Fenchel–Jensen formula

For details concerning this section, we refer to [6, 7, 13].
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Let K be a convex body in Rd+1 and ω be a Borel set of the sphere Sd,
seen as the set of unit vectors of the Euclidean space Rd+1. Let Bε(K,ω)
be the set of points p which are at distance as most ε from their metric
projection p onto K and such that p− p is collinear to a vector belonging
to ω. The Fenchel–Jensen formula [11] says that the volume of Bε(K,ω) is
a polynomial with respect to ε:

(I) V (Bε(K,ω)) = 1
d+ 1

d∑
i=0

εd+1−i
(
d+ 1
i

)
Si(K,ω) .

Each Si(K, ·) is a finite positive measure on the Borel sets of the sphere,
called the area measure of order i. S0(K, ·) is only the Lebesgue measure
of the sphere Sd, and Sd(K,ω) is the d-dimensional Hausdorff measure of
the pre-image of ω for the Gauss map.
A well-known particular case of (I) is when ω = S2, the Steiner formula.
The problem of prescribing the area measure of order d is the (gener-

alized) Minkowski problem, and the one of prescribing the area measure
of order 1 is the (generalized) Christoffel problem (each problem having a
smooth and a polyhedral version).

We will introduce suitable convex sets in the Minkowski space, such that
an analogous theory can be done. Of course, convexity and volume (here
the Lebesgue measure on Rd+1) do not depend on the ambient metric, but
the orthogonal projection does.
The Minkowski space is Rd+1 endowed with the bilinear form

〈x, y〉− := x1y1 + · · ·+ xdyd − xd+1yd+1 .

A vector v is space-like if 〈v, v〉− > 0, and future time-like if 〈v, v〉− < 0
and its last coordinate is positive. The orthogonal P of a future time-like
vector v is space-like, in the sense that the restriction of 〈·, ·〉− onto P is
positive definite, see Figure 1.1. The future side of P is the side containing
v. We denote by I+(p) the set of future time-like vectors based at a point
p. It is a convex cone with apex p.
In all the text, we will identify the hyperbolic space with the set

Hd := {x ∈ I+(0)|〈x, x〉− = −1}

endowed with the induced metric. It plays a role analogue to the round
sphere in the Euclidean space.
Let K be the intersection of the closure of the future side of space-like

hyperplanes. By construction, K is a convex set, and one sees easily that
∀p ∈ K, I+(p) ⊂ K. In particular, K is unbounded and with non-empty
interior. Moreover, the support planes of K (hyperplanes meeting K and
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Figure 1.1. Orthogonality in Minkowski space.

such that K is on one side) are space-like or light-like (i.e. the induced
bilinear form is degenerate).
For example, I+(0) is the intersection of the future side of all the space-

like vector hyperplanes. It also has as support planes all the light-like vector
hyperplanes.
Let us denote by K(Hd) the convex set bounded by Hd. It is the inter-

section of the future side of all the planes tangent to Hd.
We will denote by ∂sK the subset of the boundary of K of points con-

tained in a space-like support plane. For example, ∂s(I+(p)) = {p}. Actu-
ally, ∂sK determines K because K =

⋃
k∈∂sK I

+(k).
Conversely to the Euclidean case, the orthogonal projection is well-

defined from the interior of K. For any point x in the interior of K, there
exists a unique point rK(x) ∈ ∂sK which maximizes the Lorentzian dis-
tance from x on ∂sK. More precisely, rK(x) is in the intersection of ∂K
and the past cone of x. This intersection is a compact set. See Figure 1.2.
The Lorentzian distance between x and rK(x) is called the cosmological

time of x:

TK(x) = 〈x− rK(x), x− rK(x)〉− .

Moreover, x− rK(x) is a future time-like vector orthogonal to a support
plane of K at rK(x). So (x− rK(x))/|TK(x)| ∈ Hd.
The Gauss map GK of K is the set-valued map which associates to

x ∈ ∂sK the subset of Hd of vectors orthogonal to the space-like support
planes ofK at x. It is a well-defined map if and only if ∂sK is C1. Otherwise
we consider it as a set-valued map, see Figure 1.3.

VOLUME 32 (2014-2015)



100 FRANÇOIS FILLASTRE

Figure 1.2. The orthogonal projection onto the complementary of a
space-like convex set in Minkowski space.

Figure 1.3. The Gauss map at a non-smooth point.

Definition 1.1. — K is a F-convex set if GK is surjective onto Hd, i.e.
any future time-like vector is orthogonal to a support plane of K, i.e. any
space-like hyperplane is parallel to a support plane of K.

See Figure 1.4. We will restrict our attention to F-convex sets. First, this
is a natural assumptions as the Euclidean Gauss map of convex bodies is
surjective onto Sd. Second, for t > 0, if Kt is the set of points at distance
t from ∂sK, then Kt is C1, and GKt is proper: if ω ⊂ Hd is compact, then
G−1
Kt

(ω) is compact [6].
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Figure 1.4. Some examples of the total image of the Gauss map of
space-like convex sets. The future cone of a point is the only one being
a F-convex set.

We can now state the Lorentzian analogue of the Fenchel–Jensen for-
mula. In the following, V is the volume, i.e. the Lebesgue measure of Rd+1.
Note that isometries of the Minkowski space preserve the volume (they are
composed by a linear part living in O(1, d), of determinant 1, and by a
vector of Rd+1 acting by translation).

Theorem 1.2. — There exist Radon measures S0(K, ·), . . . , Sd(K, ·) on
Hd such that, for any compact set ω of Hd, Si(K,ω) satisfy the following
formula. Let K be an F-convex set in Rd+1 and ω ⊂ Hd be compact. Then

(1.1) V (∪0<t<εG
−1
Kt

(ω)) = 1
d+ 1

d∑
i=0

εd+1−i
(
d+ 1
i

)
Si(K,ω) .

See Figure 1.5 and Figure 1.6.

Figure 1.5. The volume of the dashed part is V (∪0<t<εG
−1
Kt

(ω)). For
a given ω, it is a degree (d+ 1) polynomial in ε.

Recall that as Hd is σ-compact, a Borel measure, finite on compact sets,
has the inner regularity property, and hence is a Radon measure. Radon

VOLUME 32 (2014-2015)



102 FRANÇOIS FILLASTRE

measures are the measures given by the Riesz representation theorem.
Si(K, ·) is called the area measure of order i of K. We have that S0(K, ·) is
the volume form of Hd. We will mention in Section 5 that Sd(K,ω) can be
seen as a derivative of the volume of an ε neighbourhood, so it is the area
of the boundary of the convex set, in the Minkowski sense.
See the end of Section 3 for an idea of the proof of Theorem 1.2.

Figure 1.6. Illustration of the Lorentzian Fenchel–Jensen formumla in
the polyhedral case for d = 2. In particular, in those cases, from the
top to the bottom, S0(K)(ω) is the hyperbolic volume of ω, S1(K)(ω)
is the hyperbolic length of ω weighted by the length of the edge, and
S2(K)(ω) is the area of the face.

Let us mention basic operations on the space of F-convex sets. It is
invariant under (Minkowski) sum

K +K ′ = {k + k′|k ∈ K, k′ ∈ K ′}

and positive homotheties: for λ > 0

λK = {λk|k ∈ K} .
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The closure of the future cone I+(p) of a point p is a F-convex set which
plays a role analoguous to the one of single points in the theory of convex
bodies, in the sense that K + I+(p) is a translation of K by the vector p.

2. Analytical point of view

For details concerning this section, we refer to [7, 13].
Let K be a F-convex set. The support function HK of K is the map

HK : I+(0)→ R, η 7→ max{〈η, k〉−, k ∈ K} .

For example, HI+(p) = 〈·, p〉−. The map HK is sublinear: 1-homogeneous
and subadditive

HK(λη) = λHK(η), λ > 0, HK(v + w) 6 HK(v) +HK(w) .

In particular, HK is convex. Classical results in convex geometry say that
any sublinear function on I+(0) is the support function of a unique F-
convex set. Moreover, HK+K′ = HK +HK′ and HλK = λHK , λ > 0.
By homogeneity, HK is determined by its restriction to any subspace

which meets any future time-like line exactly once. Two of them have par-
ticular interest:

• hK , the restriction of HK to the intersection of I+(0) and the hori-
zontal plane at height 1. This intersection is Bd×{0}, with Bd the
open unit ball centred at 0 of Rd. We will consider hK as a map on
Bd. It can be checked that support functions of F-convex sets are
exactly the convex functions on Bd.

• hK , the restriction of HK on Hd.
Although the geometric interpretation of the support function on Hd is

clear (see Figure 2.1), there is no straightforward intrinsic characterisation
of functions on Hd which are support functions. But the support functions
on Hd of C2

+ F-convex sets (∂sK is a C2 hypersurface and the Gauss map
is a C1 diffeomorphism) are exactly the C2 maps h : Hd → R such that

(2.1) ∇2hK − hKg

is positive definite, where g is the hyperbolic metric and ∇2 the hyperbolic
Hessian.
If h is a support function on the open ball Bd, it can be extended to ∂B

as a lower semi-continuous convex function, but the extension may have
infinite values. If the extension has a finite value at a point ` ∈ ∂B, this

VOLUME 32 (2014-2015)



104 FRANÇOIS FILLASTRE

Figure 2.1. The support function on Hd is the (Lorentzian) distance
from the origin to the support plane of K orthogonal to η.

has the following meaning: in the Minkowski space, ` is a light-like vector,
and there is a light-like hyperplane orthogonal to ` which is a support
plane of the F-convex set with support function h. Here support plane is
employed in a general sense, as the light-like support plane may not meet
the boundary of the F-convex set. For example, the support function of
K(Hd) is zero on the boundary of Bd, but none of the light-like plane
passing through the origin meets the hyperboloid.
In the C2

+ case, the eigenvalues of (2.1) are positive real numbers, the
principal radii of curvature. They are the inverse of the principal curvatures
(note that the principal curvatures are defined on the hypersurface, and the
principal radii of curvature are defined on Hd, but in this case the Gauss
map is a diffeomorphism). In the d = 1 case, it can be checked that the
radius of curvature is the radius of the osculating hyperbola of the curve.
In the C2

+ case, Si(K) = φi dHd, and φi is the ith elementary symmetric
function of the radii of curvature of K. In particular:

(2.2) φ1 = 1
d

trace(∇2hK − hg) = 1
d

(∇− Id)hk

with ∇ the hyperbolic Laplacian. Following an idea of [4], one can prove
that for any F-convex set K, S1(K) is equal to (2.2) in the sense of distri-
bution: ∀f ∈ C∞c (Hd),
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(S1(h), f) =
∫
Hd
f

(
1
d

∆− 1
)
hdHd :=

∫
Hd
h

(
1
d

∆− 1
)
fdHd.

For i = d, in the C2
+ case, φd is the determinant of (2.1). It is the

product of the principal radii of curvature, so the inverse of the product
of the principal curvatures, and this last product is known as the Gauss–
Kronecker curvature. On the ball Bd,

(2.3) Sd(K) = λ det(Hessh)L

with λ =
√

1− ‖ · ‖, ‖ · ‖ the Euclidean norm on Bd and L the Lebesgue
measure on Bd. Here we identify Borel sets of Hd and Borel sets of Bd via
the central projection from the origin in the ambient Minkowski space. In
the general case, the above formula holds, with at the place of det(Hessh)L,
theMonge–Ampère measure associated to h. We refer to [7, 14] for a precise
definition.

3. Group action

For details concerning this section, we refer to [1, 6, 7, 12, 13, 16].
One of the main motivations for the definition of F-convex sets is the

following class of examples. Let Γ be a group of isometries of Hd such that
Hd/Γ is a compact manifold. We also denote by Γ the corresponding group
of linear isometries in Minkowski space. A Γ-convex set is a space-like future
convex set setwise invariant under the action of Γ. The trivial example is
the closure of I+(0). A Γ-convex set is either a F-convex sets contained in
I+(0) or the closure of I+(0). Another example is K(Hd). So the closure
of I+(0) is the maximal Γ-convex set (for the inclusion). If we consider the
quotient of I+(0) by Γ, we get a flat Lorentzian spacetime (a Lorentzian
connected time-orientable manifold equipped with a time-orientation) of a
particular kind that we now describe.
Let us recall some general definitions. A Lorentz manifold M is glob-

ally hyperbolic if it admits a Cauchy surface, i.e. a spacelike hypersurface
which intersects every inextensible time-like path at exactly one point. A
classical result of R. Geroch states that the existence of a single Cauchy
surface implies the existence of a foliation by such hypersurfaces. A globally
hyperbolic spacetime is said to be spatially compact if its Cauchy surfaces
are compact. A globally hyperbolic spacetime (M, g) is maximal if every
isometric embedding of M in another globally hyperbolic spacetime of the

VOLUME 32 (2014-2015)
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same dimension and which sends Cauchy surfaces to Cauchy surfaces is
onto. For short, MGHC stands for “maximal globally hyperbolic spatially
compact”. Hence, I+(0)/Γ is a flat (future complete) MGHC. Note that it
is not past complete.
In the converse direction, if M is a flat (future complete) MGHC, it is

known that if S is a Cauchy surface of M , then up to a finite covering
S can be equipped by a metric locally isometric to Hk × Rd−k for some
0 6 k 6 d. We consider only the case where S is of hyperbolic type (that
is k = d). Let M be such a manifold. Then its universal cover isometrically
embeds into Minkowski space, and its image is a F-convex set, invariant
under a representation of π1(M) into the isometries of Minkowski space.
The image of π1(M) is an affine deformation Γτ of a cocompact lattice Γ.
More precisely, let C1(Γ,Rd+1) be the space of 1-cochains, i.e. the space

of maps
τ : Γ→ Rd+1 .

For γ0 ∈ Γ, we will denote τ(γ0) by τγ0 . The space of 1-cocycles Z1(Γ,Rd+1)
is the subspace of C1(Γ,Rd+1) of maps satisfying

(3.1) τγ0µ0 = τγ0 + γ0τµ0 .

For any τ ∈ Z1 we get a group Γτ of isometries of Minkowski space, with
linear part Γ and with translation part given by τ : for x ∈ Rd+1, γ ∈ Γτ is
defined by

γx = γ0x+ τγ0 .

The cocycle condition (3.1) expresses the fact that Γτ is a group. In other
words, Γτ is a group of isometries which is isomorphic to its linear part Γ.
Of course, Γ0 = Γ.
The space of 1-coboundaries B1(Γ,Rd+1) is the subspace of C1(Γ,Rd+1)

of maps of the form τγ0 = γ0v − v for a given v ∈ Rd+1. It is easy to
check that if τ and τ ′ differ by a 1-coboundary, then γx = fγ′f−1x, with
f a translation. The names come from the usual cohomology of groups,
and H1(Γ,Rd+1) = Z1(Γ,Rd+1)/B1(Γ,Rd+1) is the 1-cohomology group.
As we will deal only with 1-cocycles and 1-coboundaries, we will call them
cocycles and coboundaries respectively.
A τ -convex set is a future space-like closed convex set setwise invariant

under the action of Γτ . They are F-convex sets, and for any cocycle τ ,
there exist τ -convex sets. They are all included into a single τ -convex set,
denoted by Ωτ (if τ = 0, then Ωτ = I+(0)). The quotient of the interior
of Ωτ by Γτ is a future complete flat MGHC, and they are all obtained in
this way.
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Support functions of τ -convex sets on I+(0) are τ -equivariant:

(3.2) H(γ0η) = H(η) + 〈γ−1
0 τγ0 , η〉− .

So a support function can be defined on Hd/Γ, only if τ = 0. But if G
is the Gauss map of a τ -convex set, then G(γx) = γ0G(x). From this it
follows that the area measures of τ -convex sets are Γ-invariant.
A crucial property is that, given a cocycle τ , all the support functions

on Bd of τ -convex sets have a same continuous extension on ∂Bd. If τ = 0,
this extension is the constant function equal to 0.
If τ 6= 0, the sets Ωτ are much more complicated than a convex cone.

Roughly speaking, they are the future of a space-like real tree, instead of
a single point. In the case of the cone, specific tools are available (radial
function, duality, ...) that makes the study of Γ-convex sets very similar to
the one of convex bodies, where the compactness is replaced in some sense
by cocompactness.
Let us sketch the proof of Theorem 1.2. Formula (1.1) is first proved in

the Γ-convex case, where the proof mimics the one for convex bodies. Then
it is proved that any compact part of the boundary of a F-convex set can
be seen as a part of the boundary of a suitable Γ-convex set, for a suitable
Γ (up to a translation) — note the local nature of (1.1). Then the existence
of the area measures is obtained using Riesz representation theorem.

4. Solutions to the Christoffel problem

For details concerning this section, we refer to [3, 13].

4.1. Equivariant solutions

A natural question is to know, given a Radon measure µ on Hd, if there
exists a F-convex set with µ as area measure of order i. Form the analytical
point of view, one can first solve an equation (of the kind (2.2) if i = 1
and (2.3) if i = d), and then check if the solution is actually the support
function of a convex set. From the point of view of convex geometry, the
prescription of the area measure of order d is the most relevant one, as
in some sense the class of support function if the natural one in which
one can solve (2.3). This equation is the subject of the next section. Any
solution to (2.2) doesn’t need to be a support function, but the problem

VOLUME 32 (2014-2015)
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has still many interests. Actually it is the simplest one as (2.2) is linear in
the support function.
From this, a solution to the Christoffel problem (find K such that µ is

the area measure of order one of K) can be found as follows. For simplicity,
we consider first the case where µ = φ dHd, and φ has compact support.
Hence one wants to find h such that, given φ on Hd with compact support,

1
d

∆h− h = φ .

A particular solution is given by the function hφ ∈ C∞(Hd) defined as

(4.1) hφ(x) = d

∫
Hd
G(x, y)φ(y)dHd(y) ,

where we use the following notations: k : (0,+∞)→ (−∞, 0) is

k(ρ) = cosh ρ
vd−1

∫ ρ

+∞

dt
sinhd−1(t) cosh2(t)

,

with vd−1 the area of Sd−1 ⊂ Rd. Note that k is solution of the ODE

k̈(ρ) + Ȧ(ρ)
A(ρ) k̇(ρ)− dk(ρ) = 0 ,

where
A(ρ) =

∫
∂Bρ(x)

dAρ = vd−1 sinhd−1 ρ

is the area of the (smooth) geodesic sphere

∂Bρ = {y ∈ Hd : dHd(x, y) = ρ}

centred at any point x ∈ Hd and dAρ is the (d − 1)-dimensional volume
measure on ∂Bρ. Finally, the kernel function G : Hd × Hd → R ∪ {∞} is
given by

G(x, y) = k(dHd(x, y)) .
A useful remark is that, if instead of being with compact support, the

function φ is Γ-invariant, then the solution hφ in (4.1) is also Γ invariant.
So in the Γ-invariant case, a complete solution to the Christoffel problem
can be given, very similar to the solution of the (Euclidean) convex bodies
case. We don’t give the statement here (see [13] and the reference therein),
because it is tedious to write it explicitely (for the analytical solution (4.1)
to be a support function, one has to write explicitly that its 1-homogeneous
extension is sublinear).
The linearity of the Christoffel problem gives a solution in the τ -equi-

variant case. Indeed, note that any τ -equivariant function can be written as
the sum of a τ -equivariant function with a Γ invariant function. Moreover,
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one can prove that for any τ there exists a smooth function h, τ -equivariant,
such that 1

d∆h− h = 0.
Moreover, for a given τ , as all the support functions on Bd of τ -convex

sets have the same continuous extension to the boundary, so the solution
is unique.

4.2. Analysis versus geometry

Let us consider a Radon measure µ on Hd, which is supported on a totally
geodesic hypersurface P , and is the volume form of P for its intrinsinc
metric with a weight a. It is easy to construct a F-convex set with µ as
area measure of order one. In Minkowski space, P is the intersection of
Hd with a time-like vector hyperplane. Let v be a unit space-like vector
orthogonal to P . Then the F-convex set which is the union of the future
cones of points on the space-like geodesic segment from the origin to av
has µ as area measure of order 1. This process can be easily generalized if
the measure is supported by a a finite number of non intersecting weighted
hyperplanes, see Figure 4.1.

Figure 4.1. The simplest case of solution of the Christoffel problem
(d = 2), and a straighforward generalization.

VOLUME 32 (2014-2015)
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Actually, if d > 2, the hyperplanes can meet, but some conditions must
be given on the weights. In the d = 2 case, let us consider a finite number
of closed, simple, weighted, non intersecting, geodesics on a compact hy-
perbolic surface H2/Γ. Then one easily extend the construction described
above to the measure on H2 supported by the lifting of the closed geodesics
to the universal cover. When constructing the F-convex set, one can asso-
ciate an isometry of the Minkowski space to any deck transformation, and
at the end this gives (up to translations) a τ ∈ H1(Γ,R3). The F-convex
set so obtained is Ωτ , the largest τ -convex set on the interior of which Γτ
acts freely and properly discontinously.
Generalizing the process from weighted multi curves to measured ge-

odesic laminations is the way used in [16] to associate a cocycle to any
lamination. We have for example that the total length of the lamination
is equal to S1(Ωτ )(H2/Γ) (as S1(Ωτ ) is Γ invariant, we consider it as a
measure on H2/Γ).

It is not easy to see what will play the role of the measured geodesic
laminations in higher dimensions (see [6]). But for any cocycle and any d,
the measure S1(Ωτ )(·) is well-defined. On can prove that S1(Ωτ )(Hd/Γ)
is an asymmetric norm on H1(Γ,Rd+1), that corresponds to a norm of
Thurston in dimension (2 + 1) [3].
Moreover it has the following geometric interpretation. Given a cocycle

τ , one gets a future F-convex set Ωτ . On also gets a past convex set Ω−τ ,
which is a Γτ invariant convex set which contains all the past Γτ invariant
convex sets. Ωτ and Ω−τ intersect if and only if τ = 0. Then S1(Ωτ )(Hd/Γ)
is the average distance between Ωτ and Ω−τ [13].

5. Solutions to the Minkowski problem

For details about those whole section, we refer to [7].

5.1. Some results

Theorem 5.1 ([7]).
(1) For any Radon measure µ on Hd/Γ, for any τ ∈ H1(Γ,Rd+1), there

exists a τ -convex set K with Sd(K) = µ.
(2) K is unique.
(3) If

a) µ = fdHd, f > 0, f ∈ C∞(Hd/Γ),
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b) the solution given by (1) is Cauchy, i.e. it does not meet the
boundary of Ωτ ,

then

(∗) ∂sK is a space-like C∞ hypersurface

(4) a) ⇒ b) ⇒ (∗) in the following cases
• d = 2
• τ = 0

(5) There exist d,Γ, τ, µ such that [a)⇒ (∗)] is false.
(6) There exists c > 0, depending on τ , such that if f satisfies a) and

f > c, then (∗) is true.

Let us do some remarks about this statement.

• Statements 2 and 3 are straightforward translations of classical
results about Monge–Ampère equation. 4, 5, 6 also comes from
Monge–Ampère results, but with some more work. 1 is obtained by
geometric methods and is totally independent from Monge–Ampère
theory, see 5.2.

• Of course, for 3 one gets finer regularity results.
• The case τ = 0 in 4 was proved in [17]. The case d = 2 was ob-

tained in [2] by totally different methods than in [7]. They use
dimensional specificities of the dimension 2 from the point of view
of geometry and topology of surfaces. In [7], the dimensional speci-
ficity comes from a classical result in Monge–Ampère theory, known
as Alexandrov–Heinz theorem. Also in [7] are given conditions on
Ωτ such that a) ⇒ b) ⇒ (∗) holds.

• For 5, an explicit counter example is constructed for d = 3, from
a counter-example of Pogorelov for the regularity of solution of
Monge–Ampère equation. The Pogorelov example is a function on
the 3-ball with Monge–Ampère measure larger than a positive con-
stant times the Lebesgue measure, which is linear (i.e. not strictly
convex) on a segment joining two points of the sphere. From this
Pogorelov example, one has to construct the support function of a
τ -convex set in the Minkowski space, using explicit Γ and τ found
in [9]. For this τ , we then obtain the following fact:

there exists a positive constant α such that there does
not exist any smooth τ -convex set with constant Gauss–
Kronecker curvature α.
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• Recently the smooth version of Minkowski problem in dimension
(2+1) was extended to space-like convex surfaces (no group action)
in [8].

5.2. The covolume

Finally let us say a word about the proof of the first item of Theorem 5.1.
The first remark is that, for τ, τ ′ ∈ H1(Γ,Rd+1), λ > 0, if K is τ -convex,
then λK is (λτ)-convex. And if K ′ is τ ′-convex, then K + K ′ is (τ + τ ′)-
convex. In particular, the set C(τ) of τ -convex sets is convex.
We introduce a functional on this set, the covolume. If K is a τ -convex

set, it is the volume of the intersection of Ωτ \K with a fundamental domain
for the action of Γτ (this does not depend on the fundamental domain).

The main point is that
the covolume is convex on C(τ)

(one can check that it is not convex on the union of the C(τ) for all τ ∈
H1(Γ,Rd+1)). The proof lies on those two facts:

(1) there exists a convex fundamental domain for the action of Γτ in
any τ -convex set with C1 boundary (we are not able to prove that
there exists a convex fundamental domain in Ωτ , but using a limit
argument, this suffices for our purpose),

(2) if we consider the intersection C of K, a fundamental domain, and
the past of a space-like hyperplane such that it contains the inter-
section of Ωτ \K with the fundamental domain, then C is a convex
body of a particular kind, a convex cap, see Figure 5.1. The co-
volume of K is equal to a constant minus the volume of C. And
a direct application of Fubini theorem shows that the volume of
convex caps (with a fixed basis) is concave [5].

Then the idea is to minimize the following functional on C(τ) (where
τ -convex sets are identified with their support functions on Hd, and h̄τ is
the support function of Ωτ ):

(5.1) Lµ(h̄) = covolume(h̄)−
∫
Hd/Γ

h̄τ − h̄dµ .

We prove that this convex functional is coercive, that a minimum is
reached and that this minimum is a solution (i.e. gives a τ -convex set with
area measure µ). Heuristically, the proof of this last assertion follows from
the fact that the area measure is the Gâteaux gradient of the covolume.
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Figure 5.1. To the intersection of any τ -convex set with a convex fun-
damental domain, one can associate a convex cap: a convex body which
projects bijectively onto a convex set P in a hyperplane.

However this is a bit cumbersome to prove it in full generality in our context
(for the convex bodies case, see [10]). But one manages to pass over to prove
that the minimum is a solution.
Let us finish by two remarks in the case τ = 0, i.e. when the convex sets

are Γ-invariant:
(1) The covolume of a Γ-convex set with support function h̄ on Hd

writes explicitly as

− 1
d+ 1

∫
Hd/Γ

h̄dSd(K)

(there is no explicit formula for the covolume for a non-zero τ). With
this, one can check that functional (5.1) introduced by I. Bakelman
to give a variational proof of the Monge–Ampère problem [18].

(2) C(0) is a convex cone. Moreover,

covol(λK) = λd+1 covol(K) .

So (on the vector space spanned by the cone of support functions),
the covolume can be polarized as a mixed-covolume, and a theory
parallel to the theory of mixed-volume for convex bodies can be
developed [12]. Actually, without mention of the support functions,
we only need notions of (co)volume and (co)convexity, two non-
metric notions, so this can be done without referring to Lorentzian
geometry [15].
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