Abstract. We provide the small-time asymptotics of the heat kernel at the cut locus in three cases: generic Riemannian manifolds in dimension less or equal to 5, generic 3D contact and 4D quasi-contact sub-Riemannian manifolds (close to the starting point). As a byproduct we show that, for generic Riemannian manifolds of dimension less or equal to 5, the only possible singularities of the exponential map along a minimizing geodesic are and .
Nous établissons l’asymptotique en temps petit du noyau de la chaleur au lieu de coupure dans les situations génériques, en géométrie riemannienne en dimension inférieure ou égale à 5, en géométrie sous-riemannienne de contact en dimension 3 ou de quasi-contact en dimension 4. La preuve nous permet de montrer qu’en dimension inférieure ou égale à 5 les seules singularités d’une application exponentielle riemannienne générique qui peuvent apparaître le long d’une géodésique minimisante sont et .
@article{TSG_2012-2014__31__55_0, author = {Davide Barilari and Ugo Boscain and Gr\'egoire Charlot and Robert W. Neel}, title = {Asymptotiques en temps petit du noyau de la chaleur des m\'etriques riemanniennes et sous-riemanniennes}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {55--70}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, year = {2012-2014}, doi = {10.5802/tsg.294}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.294/} }
TY - JOUR AU - Davide Barilari AU - Ugo Boscain AU - Grégoire Charlot AU - Robert W. Neel TI - Asymptotiques en temps petit du noyau de la chaleur des métriques riemanniennes et sous-riemanniennes JO - Séminaire de théorie spectrale et géométrie PY - 2012-2014 SP - 55 EP - 70 VL - 31 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.294/ DO - 10.5802/tsg.294 LA - fr ID - TSG_2012-2014__31__55_0 ER -
%0 Journal Article %A Davide Barilari %A Ugo Boscain %A Grégoire Charlot %A Robert W. Neel %T Asymptotiques en temps petit du noyau de la chaleur des métriques riemanniennes et sous-riemanniennes %J Séminaire de théorie spectrale et géométrie %D 2012-2014 %P 55-70 %V 31 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.294/ %R 10.5802/tsg.294 %G fr %F TSG_2012-2014__31__55_0
Davide Barilari; Ugo Boscain; Grégoire Charlot; Robert W. Neel. Asymptotiques en temps petit du noyau de la chaleur des métriques riemanniennes et sous-riemanniennes. Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 55-70. doi : 10.5802/tsg.294. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.294/
[1] A. A. Agrachev; D. Barilari; U. Boscain Introduction to Riemannian and Sub-Riemannian geometry (2014) (http://www.math.jussieu.fr/~barilari/Notes.php)
[2] A. A. Agrachev; El-H. Chakir El-A.; J. P. Gauthier Sub-Riemannian metrics on , Geometric control and non-holonomic mechanics (Mexico City, 1996) (CMS Conf. Proc.), Volume 25, Amer. Math. Soc., Providence, RI, 1998, pp. 29-78 | MR | Zbl
[3] Andrei Agrachev; Ugo Boscain; Jean-Paul Gauthier; Francesco Rossi The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal., Volume 256 (2009) no. 8, pp. 2621-2655 | DOI | MR | Zbl
[4] V. I. Arnold; S. M. Gusein-Zade; A. N. Varchenko Singularities of differentiable maps. Volume 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012, pp. xii+382 (Classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous based on a previous translation by Mark Reynolds, Reprint of the 1985 edition) | MR | Zbl
[5] Davide Barilari; Ugo Boscain; Grégoire Charlot; Robert W. Neel On the heat diffusion for generic Riemannian and sub-Riemannian structures (soumis)
[6] Davide Barilari; Ugo Boscain; Robert W. Neel Small-time heat kernel asymptotics at the sub-Riemannian cut locus, J. Differential Geom., Volume 92 (2012) no. 3, pp. 373-416 | MR | Zbl
[7] Davide Barilari; Jacek Jendrej Small time heat kernel asymptotics at the cut locus on surfaces of revolution, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 31 (2014) no. 2, pp. 281-295 | DOI | Numdam | MR | Zbl
[8] Davide Barilari; Luca Rizzi A formula for Popp’s volume in sub-Riemannian geometry, Anal. Geom. Metr. Spaces, Volume 1 (2013), pp. 42-57 | DOI | MR | Zbl
[9] G. Ben Arous Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus, Ann. Sci. École Norm. Sup. (4), Volume 21 (1988) no. 3, pp. 307-331 | Numdam | MR | Zbl
[10] Ugo Boscain; Camille Laurent The Laplace-Beltrami operator in almost-Riemannian geometry, Ann. Inst. Fourier (Grenoble), Volume 63 (2013) no. 5, pp. 1739-1770 | EuDML | Numdam | MR
[11] G. Charlot Cut locus and heat kernel at Grushin points of 2 dimensional almost Riemannian metrics (http ://arxiv.org/abs/1408.2120)
[12] El-H. Ch. El-Alaoui; J.-P. Gauthier; I. Kupka Small sub-Riemannian balls on , J. Dynam. Control Systems, Volume 2 (1996) no. 3, pp. 359-421 | MR | Zbl
[13] Ricardo Estrada; Ram P. Kanwal A distributional approach to asymptotics, Birkhäuser Advanced Texts : Basler Lehrbücher. [Birkhäuser Advanced Texts : Basel Textbooks], Birkhäuser Boston Inc., Boston, MA, 2002, pp. xvi+451 (Theory and applications) | MR | Zbl
[14] Detlef Gromoll; Wolfgang Meyer On differentiable functions with isolated critical points, Topology, Volume 8 (1969), pp. 361-369 | MR | Zbl
[15] Lars Hörmander Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171 | MR | Zbl
[16] S. Janeczko; T. Mostowski Relative generic singularities of the exponential map, Compositio Math., Volume 96 (1995) no. 3, pp. 345-370 | EuDML | Numdam | MR | Zbl
[17] Rémi Léandre Majoration en temps petit de la densité d’une diffusion dégénérée, Probab. Theory Related Fields, Volume 74 (1987) no. 2, pp. 289-294 | DOI | MR | Zbl
[18] Rémi Léandre Minoration en temps petit de la densité d’une diffusion dégénérée, J. Funct. Anal., Volume 74 (1987) no. 2, pp. 399-414 | DOI | MR | Zbl
[19] S. A. Molčanov Diffusion processes, and Riemannian geometry, Uspehi Mat. Nauk, Volume 30 (1975) no. 1(181), pp. 3-59 | Zbl
[20] Richard Montgomery A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002, pp. xx+259 | MR | Zbl
[21] Robert Neel The small-time asymptotics of the heat kernel at the cut locus, Comm. Anal. Geom., Volume 15 (2007) no. 4, pp. 845-890 | MR | Zbl
[22] Robert Neel; Daniel Stroock Analysis of the cut locus via the heat kernel, Surveys in differential geometry. Vol. IX (Surv. Differ. Geom., IX), Int. Press, Somerville, MA, 2004, pp. 337-349 | MR | Zbl
[23] Robert S. Strichartz Sub-Riemannian geometry, J. Differential Geom., Volume 24 (1986) no. 2, pp. 221-263 http://projecteuclid.org/getRecord?id=euclid.jdg/1214440436 | MR | Zbl
[24] S. R. S. Varadhan On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., Volume 20 (1967), pp. 431-455 | MR | Zbl
Cited by Sources: