In this paper, we present an extension of the classical Quantum ergodicity Theorem, due to Shnirelman, to the case of Laplacians with discontinous metrics along interfaces. The “geodesic flow” is then no more a flow, but a Markov process due to the fact that rays can by reflected or refracted at the interfaces. We give also an example build by gluing together two flat Euclidean disks.
@article{TSG_2012-2014__31__71_0, author = {Yves Colin de Verdi\`ere}, title = {The semi-classical ergodic {Theorem} for discontinuous metrics}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {71--89}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, year = {2012-2014}, doi = {10.5802/tsg.295}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.295/} }
TY - JOUR AU - Yves Colin de Verdière TI - The semi-classical ergodic Theorem for discontinuous metrics JO - Séminaire de théorie spectrale et géométrie PY - 2012-2014 SP - 71 EP - 89 VL - 31 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.295/ DO - 10.5802/tsg.295 LA - en ID - TSG_2012-2014__31__71_0 ER -
%0 Journal Article %A Yves Colin de Verdière %T The semi-classical ergodic Theorem for discontinuous metrics %J Séminaire de théorie spectrale et géométrie %D 2012-2014 %P 71-89 %V 31 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.295/ %R 10.5802/tsg.295 %G en %F TSG_2012-2014__31__71_0
Yves Colin de Verdière. The semi-classical ergodic Theorem for discontinuous metrics. Séminaire de théorie spectrale et géométrie, Volume 31 (2012-2014), pp. 71-89. doi : 10.5802/tsg.295. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.295/
[1] Ralph Abraham Transversality in manifolds of mappings, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 470-474 | MR | Zbl
[2] Ralph Abraham; Joel Robbin Transversal mappings and flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967, pp. x+161 | MR | Zbl
[3] Guillaume Bal Kinetics of scalar wave fields in random media, Wave Motion, Volume 43 (2005) no. 2, pp. 132-157 | DOI | MR | Zbl
[4] Gregory Berkolaiko; Jon Keating; Brian Winn No quantum ergodicity for star graphs, Comm. Math. Phys., Volume 250 (2004) no. 2, pp. 259-285 | DOI | MR | Zbl
[5] Jacques Chazarain Construction de la paramétrix du problème mixte hyperbolique pour l’équation des ondes, C. R. Acad. Sci. Paris Sér. A-B, Volume 276 (1973), p. A1213-A1215 | MR | Zbl
[6] Hans Duistermaat; Victor Guillemin The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | MR | Zbl
[7] Nelson Dunford; Jacob T. Schwartz Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988, pp. xiv+858 (General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication) | MR | Zbl
[8] Patrick Gérard; Éric Leichtnam Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl
[9] Dmitry Jakobson; Yuri Safarov; Alexander Strohmaier; Yves Colin de Verdière (Appendix) The semi-classical theory of discontinuous systems and ray-splitting billiards (2015) (To appear in Amer. J. Math.)
[10] Ulrich Krengel Ergodic theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter & Co., Berlin, 1985, pp. viii+357 (With a supplement by Antoine Brunel) | DOI | MR | Zbl
[11] Alexander Shnirelman Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Volume 29 (1974) no. 6(180), pp. 181-182 | MR | Zbl
[12] René Thom Un lemme sur les applications différentiables, Bol. Soc. Mat. Mexicana (2), Volume 1 (1956), pp. 59-71 | MR | Zbl
[13] Yves Colin de Verdière Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 http://projecteuclid.org/euclid.cmp/1104114465 | Zbl
[14] Yves Colin de Verdière Semi-classical measures on quantum graphs and the Gauß map of the determinant manifold, Ann. Henri Poincaré, Volume 16 (2015) no. 2, pp. 347-364 | DOI | MR
[15] Yves Colin de Verdière; Luc Hillairet; Emmanuel Trélat Quantum ergodicity for sub-Riemannian Laplacians. I: the contact 3D case (2015) (http://arxiv.org/abs/1504.07112)
[16] Steven Zelditch Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl
[17] Steven Zelditch; Maciej Zworski Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys., Volume 175 (1996) no. 3, pp. 673-682 http://projecteuclid.org/euclid.cmp/1104276097 | MR | Zbl
Cited by Sources: