This is a brief survey of recent results culminating in the proof of the fundamental gap conjecture by Andrews and Clutterbuck [1]. Recalling the Bakry-Émery geometry and Laplacian, we present our joint results with Z. Lu [14] which demonstrate an intimate connection between the first non-trivial eigenvalue of a certain Bakry-Émery Laplacian and the fundamental gap. This is a special case of our more general results relating Dirichlet and Neumann eigenvalues and Bakry-Émery eigenvalues. Ideas particularly germane to the recent proof of the fundamental gap conjecture are discussed. In conclusion, we present recent results for the fundamental gap on the moduli spaces of n-simplices in general and triangles in particular.
Cet article est une présentation rapide, d’une part de résultats de l’auteur et Z. Lu [14], et d’autre part, de la résolution de la conjecture de l’écart fondamental par Andrews et Clutterbuck [1]. Nous commençons par rappeler ce qu’est la géométrie de Bakry-Émery, nous poursuivons en montrant les liens entre valeurs propres du laplacien de Dirichlet et de Neumann. Nous démontrons ensuite un rapport entre l’écart fondamental et la géométrie de Bakry-Émery, puis nous présentons les idées principales de la preuve de la conjecture de l’écart fondamental de [1]. Nous concluons par des résultats pour l’écart des triangles et des simplexes.
@article{TSG_2009-2010__28__147_0, author = {Julie Rowlett}, title = {La g\'eom\'etrie de {Bakry-\'Emery} et l{\textquoteright}\'ecart fondamental}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {147--157}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, year = {2009-2010}, doi = {10.5802/tsg.282}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.282/} }
TY - JOUR AU - Julie Rowlett TI - La géométrie de Bakry-Émery et l’écart fondamental JO - Séminaire de théorie spectrale et géométrie PY - 2009-2010 SP - 147 EP - 157 VL - 28 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.282/ DO - 10.5802/tsg.282 LA - fr ID - TSG_2009-2010__28__147_0 ER -
%0 Journal Article %A Julie Rowlett %T La géométrie de Bakry-Émery et l’écart fondamental %J Séminaire de théorie spectrale et géométrie %D 2009-2010 %P 147-157 %V 28 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.282/ %R 10.5802/tsg.282 %G fr %F TSG_2009-2010__28__147_0
Julie Rowlett. La géométrie de Bakry-Émery et l’écart fondamental. Séminaire de théorie spectrale et géométrie, Volume 28 (2009-2010), pp. 147-157. doi : 10.5802/tsg.282. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.282/
[1] B. Andrews; J. Clutterbuck Proof of the fundamental gap conjecture arXiv 1006.1686, (2010)
[2] P. Antunes; P. Freitas A numerical study of the spectral gap, J. Phys. A, Volume 41 (2008) no. 5, pp. 055201, 19 | MR | Zbl
[3] D. Bakry; M. Émery Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 (Lecture Notes in Math.), Volume 1123, Springer, Berlin, 1985, pp. 177-206 | EuDML | Numdam | MR | Zbl
[4] M. van den Berg On condensation in the free-boson gas and the spectrum of the Laplacian, J. Statist. Phys., Volume 31 (1983) no. 3, pp. 623-637
[5] T. Betcke; Z. Lu; J. Rowlett The fundamental gap of triangles (en préparation) | MR | Zbl
[6] H. J. Brascamp; E. H. Lieb On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, Volume 22 (1976) no. 4, pp. 366-389 | MR | Zbl
[7] I. Chavel Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., Orlando, FL, 1984 (Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk) | MR | Zbl
[8] R. Courant; D. Hilbert Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953 | MR | Zbl
[9] W. Kirsch; B. Simon Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal., Volume 75 (1987) no. 2, pp. 396-410 | MR | Zbl
[10] R. Lavine The eigenvalue gap for one-dimensional convex potentials, Proc. Amer. Math. Soc., Volume 121 (1994) no. 3, pp. 815-821 | MR
[11] P. Li; A. Treibergs Applications of eigenvalue techniques to geometry, Contemporary geometry (Univ. Ser. Math.), Plenum, New York, 1991, pp. 21-52 | MR | Zbl
[12] P. Li; S. T. Yau Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) (Proc. Sympos. Pure Math., XXXVI), Amer. Math. Soc., Providence, R.I., 1980, pp. 205-239 | MR | Zbl
[13] J. Lott Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 865-883
[14] Z. Lu; J. Rowlett The fundamental gap preprint (2009), arXiv 1003.0191v1
[15] Z. Lu; J. Rowlett The fundamental gap conjecture on polygonal domains arXiv :0810.4937, (2008) | MR | Zbl
[16] L. Ma; B. Liu Convex eigenfunction of a drifting Laplacian operator and the fundamental gap, Pacific J. Math., Volume 240 (2009) no. 2, pp. 343-361 | Numdam | MR | Zbl
[17] I. M. Singer; B. Wong; S.-T. Yau; S. S.-T. Yau An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 12 (1985) no. 2, pp. 319-333 | MR | Zbl
[18] K.-T. Sturm On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | MR
[19] C. Villani Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[20] G. Wei; W. Wylie Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom., Volume 83 (2009) no. 2, pp. 377-405 | MR | Zbl
[21] Q. H. Yu; J. Q. Zhong Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator, Trans. Amer. Math. Soc., Volume 294 (1986) no. 1, pp. 341-349 | MR | Zbl
Cited by Sources: