In this article, we review some results of Miles Simon about the Ricci flow of some 3-dimensional metric spaces. These results are from [26] and [28]. We first explain the link between rigidity theorems and convergence of manifolds on an example from Berger and Durumeric. Then, we notice that in order to obtain such rigidity theorems using Ricci flow, one needs to build a Ricci flow for potentially non-smooth spaces. The last two sections expose how to construct such flows (following [26] and [28]) and give some geometric applications of this construction.
Dans cet article, on passe en revue certains résultats dus à Miles Simon sur le flot de Ricci de certains espaces métriques de dimension 3 exposés dans [28] et [26].
On commence par voir le lien entre théorèmes de rigidité et convergence des variétés sur un exemple dû à Berger et Durumeric. On remarque ensuite que pour obtenir de tels théorèmes de rigidité en utilisant le flot de Ricci, il faut être capable de construire le flot pour des espaces peu lisses.
Les deux dernières partie sont consacrées à une explication de la construction de tels flots (en suivant [28] et [26]) et à des applications géométriques de cette construction.
@article{TSG_2009-2010__28__121_0, author = {Thomas Richard}, title = {Suites de flots de {Ricci} en dimension 3 et applications}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {121--145}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, year = {2009-2010}, doi = {10.5802/tsg.281}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.281/} }
TY - JOUR AU - Thomas Richard TI - Suites de flots de Ricci en dimension 3 et applications JO - Séminaire de théorie spectrale et géométrie PY - 2009-2010 SP - 121 EP - 145 VL - 28 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.281/ DO - 10.5802/tsg.281 LA - fr ID - TSG_2009-2010__28__121_0 ER -
%0 Journal Article %A Thomas Richard %T Suites de flots de Ricci en dimension 3 et applications %J Séminaire de théorie spectrale et géométrie %D 2009-2010 %P 121-145 %V 28 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.281/ %R 10.5802/tsg.281 %G fr %F TSG_2009-2010__28__121_0
Thomas Richard. Suites de flots de Ricci en dimension 3 et applications. Séminaire de théorie spectrale et géométrie, Volume 28 (2009-2010), pp. 121-145. doi : 10.5802/tsg.281. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.281/
[1] Uwe Abresch; Wolfgang T. Meyer A sphere theorem with a pinching constant below , J. Differential Geom., Volume 44 (1996) no. 2, pp. 214-261 | MR | Zbl
[2] Michael T. Anderson; Jeff Cheeger Diffeomorphism finiteness for manifolds with Ricci curvature and -norm of curvature bounded, Geom. Funct. Anal., Volume 1 (1991) no. 3, pp. 231-252 | MR | Zbl
[3] Michael T. Anderson; Jeff Cheeger -compactness for manifolds with Ricci curvature and injectivity radius bounded below, J. Differential Geom., Volume 35 (1992) no. 2, pp. 265-281 | MR | Zbl
[4] M. Berger Les variétés Riemanniennes -pincées, Ann. Scuola Norm. Sup. Pisa (3), Volume 14 (1960), pp. 161-170 | Numdam | MR | Zbl
[5] Marcel Berger Sur les variétés riemanniennes pincées juste au-dessous de , Ann. Inst. Fourier (Grenoble), Volume 33 (1983) no. 2, p. 135-150 (loose errata) | Numdam | MR | Zbl
[6] Marcel Berger A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003 | MR | Zbl
[7] Dmitri Burago; Yuri Burago; Sergei Ivanov A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001 | MR
[8] Jeff Cheeger Finiteness theorems for Riemannian manifolds, Amer. J. Math., Volume 92 (1970), pp. 61-74 | MR | Zbl
[9] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., Volume 46 (1997) no. 3, pp. 406-480 | MR | Zbl
[10] Bing-Long Chen; Xi-Ping Zhu Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom., Volume 74 (2006) no. 1, pp. 119-154 | MR | Zbl
[11] Bennett Chow; Dan Knopf The Ricci flow : an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004 | MR
[12] Bennett Chow; Peng Lu; Lei Ni Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI, 2006 | MR
[13] Tobias H. Colding Ricci curvature and volume convergence, Ann. of Math. (2), Volume 145 (1997) no. 3, pp. 477-501 | MR | Zbl
[14] O. Durumeric A generalization of Berger’s theorem on almost -pinched manifolds. II, J. Differential Geom., Volume 26 (1987) no. 1, pp. 101-139 | MR | Zbl
[15] R. E. Greene; H. Wu Lipschitz convergence of Riemannian manifolds, Pacific J. Math., Volume 131 (1988) no. 1, pp. 119-141 | MR | Zbl
[16] Misha Gromov Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser Boston Inc., Boston, MA, 1999 Based on the 1981 French original [ MR0682063 (85e :53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates | MR | Zbl
[17] Richard S. Hamilton Three-manifolds with positive Ricci curvature, J. Differential Geom., Volume 17 (1982) no. 2, pp. 255-306 | MR | Zbl
[18] Richard S. Hamilton A compactness property for solutions of the Ricci flow, Amer. J. Math., Volume 117 (1995) no. 3, pp. 545-572 | MR | Zbl
[19] Wilhelm Klingenberg Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv., Volume 35 (1961), pp. 47-54 | MR | Zbl
[20] G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (ArXiv Mathematics e-prints arXiv :math/0307245, 2003) | Zbl
[21] G. Perelman Ricci flow with surgery on three-manifolds (ArXiv Mathematics e-prints arXiv :math/0303109, 2003) | Zbl
[22] G. Perelman The entropy formula for the Ricci flow and its geometric applications (ArXiv Mathematics e-prints arXiv :math/0211159, 2002) | Zbl
[23] G. Perelman Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, Comparison geometry (Berkeley, CA, 1993–94) (Math. Sci. Res. Inst. Publ.), Volume 30, Cambridge Univ. Press, Cambridge, 1997, pp. 157-163 | MR | Zbl
[24] Wan-Xiong Shi Complete noncompact three-manifolds with nonnegative Ricci curvature, J. Differential Geom., Volume 29 (1989) no. 2, pp. 353-360 | MR | Zbl
[25] Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds, J. Differential Geom., Volume 30 (1989) no. 1, pp. 223-301 | MR | Zbl
[26] M. Simon Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below (ArXiv e-prints arXiv :math/0903.2142, 2009) | MR
[27] Miles Simon Deformation of Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom., Volume 10 (2002) no. 5, pp. 1033-1074 | MR | Zbl
[28] Miles Simon Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math., Volume 630 (2009), pp. 177-217 | MR | Zbl
[29] Alan Weinstein On the homotopy type of positively-pinched manifolds, Arch. Math. (Basel), Volume 18 (1967), pp. 523-524 | MR | Zbl
Cited by Sources: