On résume les proprietés de l’invariant de Perelman, et en combinaison avec l’invariant de Yamabe on exprime certaines proprietés géométriques des variétés de dimension en fonction de . On décrit des exemples d’annulation de en dimension , où on trouve des liens entre l’effondrement et l’existence de métriques à courbure scalaire positive. On montre qu’une version d’atoroïdalité qu’on appelle atoroïdalité complète est détectée par sur les variétés de courbure négative ou nulle de dimension .
@article{TSG_2007-2008__26__145_0, author = {Pablo Su\'arez-Serrato}, title = {Atoro{\"\i}dalit\'e compl\`ete et annulation de l{\textquoteright}invariant $\bar{\lambda }$ de {Perelman}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {145--154}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, year = {2007-2008}, doi = {10.5802/tsg.265}, mrnumber = {2654602}, zbl = {1185.53040}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.265/} }
TY - JOUR AU - Pablo Suárez-Serrato TI - Atoroïdalité complète et annulation de l’invariant $\bar{\lambda }$ de Perelman JO - Séminaire de théorie spectrale et géométrie PY - 2007-2008 SP - 145 EP - 154 VL - 26 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.265/ DO - 10.5802/tsg.265 LA - fr ID - TSG_2007-2008__26__145_0 ER -
%0 Journal Article %A Pablo Suárez-Serrato %T Atoroïdalité complète et annulation de l’invariant $\bar{\lambda }$ de Perelman %J Séminaire de théorie spectrale et géométrie %D 2007-2008 %P 145-154 %V 26 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.265/ %R 10.5802/tsg.265 %G fr %F TSG_2007-2008__26__145_0
Pablo Suárez-Serrato. Atoroïdalité complète et annulation de l’invariant $\bar{\lambda }$ de Perelman. Séminaire de théorie spectrale et géométrie, Volume 26 (2007-2008), pp. 145-154. doi : 10.5802/tsg.265. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.265/
[1] K. Akutagawa, M. Ishida, C. LeBrun, Perelman’s Invariant, Ricci Flow, and the Yamabe Invariants of Smooth Manifolds, Arch. Math. 88 (2007) no.1, 71–76. | MR
[2] W.P. Barth, K. Hulek,C.A. Peters, A. Van de Ven, Compact complex surfaces. Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4. Springer–Verlag, Berlin, 2004. | MR | Zbl
[3] S.K. Donaldson, The Seiberg–Witten equations and -manifold topology, Bull. Amer. Math. Soc. 33 (1996), no. 1, 45–70. | MR | Zbl
[4] R. Friedman, J.W. Morgan, Algebraic surfaces and Seiberg–Witten invariants, J. Algebraic Geom. 6 (1997), no. 3, 445–479. | MR | Zbl
[5] D. Gromoll J.A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 1971 545–552. | MR | Zbl
[6] M. Gromov, Volume and Bounded Cohomology, Pub. Math. I.H.E.S. tome 56 (1982) 5-99. | Numdam | MR | Zbl
[7] M. Gromov, H.B. Lawson, Positive scalar curvature and the Dirac operator on complete riemannian manifolds, Pub. Mat. I.H.E.S. 58 (1983) 83–196. | Numdam | MR | Zbl
[8] R. Hamilton, Three–manifolds with positive Ricci curvature, Journ. Diff. Geom. 17 (1982) 255–306. | MR | Zbl
[9] J.A. Hillman, Four–manifolds, Geometries and Knots, Geometry and Topology Monographs, Volume 5 (2002). | MR | Zbl
[10] B. Kleiner and J. Lott, Notes on Perelman’s Papers, Geometry &Topology 12 (2008) 2587–2855. | MR
[11] D. Kotschick, The Seiberg-Witten invariants of symplectic four-manifolds (after C. H. Taubes), Séminaire Bourbaki, Vol. 1995/96. Astérisque No. 241 (1997), Exp. No. 812, 4, 195–220. | Numdam | MR | Zbl
[12] H.B. Lawson, S.T. Yau, Compact manifolds of nonpositive curvature, J. Diff. Geom. 7 (1972), 211–228. | MR | Zbl
[13] C. LeBrun, Kodaira dimension and the Yamabe problem, Comm. An. Geom. 7 (1999) 133–156. | MR | Zbl
[14] B. Leeb, P. Scott, A geometric characteristic splitting in all dimensions, Comm. Mat. Helv. 75 (2000) 201–215. | MR | Zbl
[15] G. Paternain, J. Petean, Minimal entropy and collapsing with curvature bounded from below, Invent.Math. 151 (2003) 415–450. | MR | Zbl
[16] G. Paternain, J. Petean, Entropy and collapsing of compact complex surfaces, Proc. London Math. Soc. (3) 89 (2004), no. 3, 763–786. | MR | Zbl
[17] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Prépublication (2002), arXiv:math.DG/0211159. | Zbl
[18] G. Perelman, Ricci flow with surgery on three-manifolds, Prépublication (2003), arXiv:math/0303109. | Zbl
[19] J. Petean, The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523 (2000), 225–231. | MR | Zbl
[20] P. Suárez-Serrato, Minimal entropy and geometric decompositions in dimension four, Algebraic & Geometric Topology 9 (2009) 365–395. | MR | Zbl
[21] P. Suárez-Serrato, Perelman’s invariant and collapse via geometric characteristic splittings, Prépublication (2008), arxiv:math.DG/0804.4588.
[22] C. H. Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809–822. | MR | Zbl
[23] R. Schoen, Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics, LNM 1365, Springer Verlag, Berlin (1987) 120-154. | MR | Zbl
[24] W.P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. | MR | Zbl
[25] C.T.C. Wall, Geometric structures on compact complex analytic surfaces, Topology, Vol.25, No.2 (1986) 119-153. | MR | Zbl
[26] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. | MR | Zbl
Cited by Sources: