We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.
@article{TSG_2007-2008__26__139_0, author = {Harish Seshadri}, title = {Isotropic curvature: {A} survey}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {139--144}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, year = {2007-2008}, doi = {10.5802/tsg.264}, mrnumber = {2654601}, zbl = {1183.53032}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.264/} }
TY - JOUR AU - Harish Seshadri TI - Isotropic curvature: A survey JO - Séminaire de théorie spectrale et géométrie PY - 2007-2008 SP - 139 EP - 144 VL - 26 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.264/ DO - 10.5802/tsg.264 LA - en ID - TSG_2007-2008__26__139_0 ER -
%0 Journal Article %A Harish Seshadri %T Isotropic curvature: A survey %J Séminaire de théorie spectrale et géométrie %D 2007-2008 %P 139-144 %V 26 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.264/ %R 10.5802/tsg.264 %G en %F TSG_2007-2008__26__139_0
Harish Seshadri. Isotropic curvature: A survey. Séminaire de théorie spectrale et géométrie, Volume 26 (2007-2008), pp. 139-144. doi : 10.5802/tsg.264. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.264/
[1] S. Brendle Einstein manifolds with nonnegative isotropic curvature are locally symmetric, arXiv:0812.0335
[2] S. Brendle, R. Schoen, Manifolds with 1/4-pinched Curvature are Space Forms, To appear in the Journal of American Mathematical Society. | MR
[3] S. Brendle, R. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures, Acta Mathematica 200 (2008), 1-13. | MR | Zbl
[4] A. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345-354. | MR | Zbl
[5] A. Fraser, The fundamental group of manifolds of positive isotropic curvature and surface groups, Duke Math. J. 133 (2006), no. 2, 325-334. | MR | Zbl
[6] S. Gadgil, H. Seshadri On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009), 1807-1811. | MR | Zbl
[7] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), 1-295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[8] R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. | MR | Zbl
[9] M. Micallef, J. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199-227. | MR | Zbl
[10] M. Micallef, M. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649-672. | MR | Zbl
[11] R. Schoen, http://www.math.washington.edu/~lee/PNGS/2007-fall/schoen-problems.pdf
[12] W. Seaman, On manifolds with nonnegative curvature on totally isotropic 2-planes, Trans. Amer. Math. Soc. 338 (1993), no. 2, 843-855. | MR | Zbl
[13] H. Seshadri, A note on negative isotropic curvature, Math. Res. Lett. 11 (2004), no. 2-3, 365-370. | MR | Zbl
[14] H. Seshadri, Manifolds with nonnegative isotropic curvature, http://www.math.iisc.ernet.in/~harish/papers/pic-cag.pdf
Cited by Sources: