Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire de théorie spectrale et géométrie
  • Tome 25 (2006-2007)
  • p. 85-104
  • Suivant
Transport de mesure et courbures de Ricci synthétiques dans le groupe de Heisenberg
Nicolas Juillet1
1 Université Grenoble 1 Institut Fourier — UMR CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères cedex (France) et Universität Bonn Institut für Angewandte Mathematik Poppelsdorfer Allee 82 53115 Bonn (Germany)
Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007), pp. 85-104.
  • Résumé

Dans ces notes il sera expliqué que la propriété MCP(0,5) est vérifiée par le groupe de Heisenberg ℍ 1 muni de la distance de Carnot-Carathéodory et de la mesure de Lebesgue. Cette propriété correspond pour les espaces métriques mesurés à une courbure de Ricci positive. Comme application, les mesures interpolées par transport de mesure sont absolument continues. En revanche, la courbure-dimension CD(0,N), une autre courbure de Ricci synthétique adaptée aux espaces métriques mesurés est fausse pour ℍ 1 .

  • Détail
  • Export
  • Comment citer
MR
DOI : 10.5802/tsg.249
Mot clés : groupe de Heisenberg, transport optimal, courbure de Ricci
Keywords: Heisenberg group, optimal transport, Ricci curvature
Affiliations des auteurs :
Nicolas Juillet 1

1 Université Grenoble 1 Institut Fourier — UMR CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères cedex (France) et Universität Bonn Institut für Angewandte Mathematik Poppelsdorfer Allee 82 53115 Bonn (Germany)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2006-2007__25__85_0,
     author = {Nicolas Juillet},
     title = {Transport de mesure et courbures de {Ricci} synth\'etiques dans le groupe de {Heisenberg}},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {85--104},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     year = {2006-2007},
     doi = {10.5802/tsg.249},
     mrnumber = {2478810},
     language = {fr},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.249/}
}
TY  - JOUR
AU  - Nicolas Juillet
TI  - Transport de mesure et courbures de Ricci synthétiques dans le groupe de Heisenberg
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2006-2007
SP  - 85
EP  - 104
VL  - 25
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.249/
DO  - 10.5802/tsg.249
LA  - fr
ID  - TSG_2006-2007__25__85_0
ER  - 
%0 Journal Article
%A Nicolas Juillet
%T Transport de mesure et courbures de Ricci synthétiques dans le groupe de Heisenberg
%J Séminaire de théorie spectrale et géométrie
%D 2006-2007
%P 85-104
%V 25
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.249/
%R 10.5802/tsg.249
%G fr
%F TSG_2006-2007__25__85_0
Nicolas Juillet. Transport de mesure et courbures de Ricci synthétiques dans le groupe de Heisenberg. Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007), pp. 85-104. doi : 10.5802/tsg.249. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.249/
  • Bibliographie
  • Cité par

[1] L. Ambrosio; S. Rigot Optimal mass transportation in the Heisenberg group, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 261-301 | MR | Zbl

[2] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[3] D. Bakry; M. Émery Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 (Lecture Notes in Math.), Volume 1123, Springer, Berlin, 1985, pp. 177-206 | Numdam | MR | Zbl

[4] Yann Brenier Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | MR | Zbl

[5] A. Figalli; N. Juillet Absolute continuity of Wasserstein geodesics in the Heisenberg group, accepted in J. Funct. Anal. (2007)

[6] J. Heinonen Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[7] N. Juillet Ricci curvature bounds and geometric inequalities in the Heisenberg group (2006) (preprint SFB611 Bonn)

[8] J. Lott; C. Villani Ricci curvature for metric-measure spaces via optimal transport (Annals of Math., to appear)

[9] J. Lott; C. Villani Weak curvature conditions and functional inequalities, J. Funct. Anal., Volume 245 (2007) no. 1, pp. 311-333 | MR | Zbl

[10] Shin-ichi Ohta On the measure contraction property of metric measure spaces, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 805-828 | MR

[11] K.-T. Sturm On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | MR | Zbl

[12] K.-T. Sturm On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | MR | Zbl

[13] C. Villani Optimal transport, old and new (St-Flour Summer School Lecture Notes 2005 to appear in Lecture Notes in Math.)

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre