We study the inverse scattering problem for a waveguide with cylindrical ends, , where each has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines up to an isometry.
@article{TSG_2006-2007__25__71_0, author = {Hiroshi Isozaki and Yaroslav Kurylev and Matti Lassas}, title = {Inverse {Scattering} for {Waveguides}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {71--83}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.248}, mrnumber = {2478809}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.248/} }
TY - JOUR AU - Hiroshi Isozaki AU - Yaroslav Kurylev AU - Matti Lassas TI - Inverse Scattering for Waveguides JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 71 EP - 83 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.248/ DO - 10.5802/tsg.248 LA - en ID - TSG_2006-2007__25__71_0 ER -
%0 Journal Article %A Hiroshi Isozaki %A Yaroslav Kurylev %A Matti Lassas %T Inverse Scattering for Waveguides %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 71-83 %V 25 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.248/ %R 10.5802/tsg.248 %G en %F TSG_2006-2007__25__71_0
Hiroshi Isozaki; Yaroslav Kurylev; Matti Lassas. Inverse Scattering for Waveguides. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 71-83. doi : 10.5802/tsg.248. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.248/
[1] Berard P., Besson G., Gallot S. Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal, 4 (1994), 373-398. | MR | Zbl
[2] Christiansen T., Scattering theory for manifolds with asymptotically cylindrical ends, J. Funct. Anal. 131 (1995), 499-530. | MR | Zbl
[3] Christiansen T. and Zworski R., Spectral asymptotics for m anifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble), 45 (1995), 251-263. | Numdam | MR | Zbl
[4] Colin de Verdière, Y., Une nouvelle démonstration du prolonement méromorphe des série d’ Eisenstein, C. R. Acad. Sc. Paris, t. 293 (1981), 361-363. | Zbl
[5] Dediu S., McLaughlin J. Recovering inhomogeneities in a wave guide using eigensystem decomposition, Inverse Problems 32 (2006), 1226-1246. | MR | Zbl
[6] Eidus D., Completeness properties of scattering problem solutions. Comm. PDE 7 (1982), 55–75. | MR | Zbl
[7] Eskin G., Ralston J., Yamamoto M., Inverse scattering for gratings and wave guides. Preprint: arXiv:0704.2274v1
[8] Faddeev L.D., The inverse problem in the quantum theory of scattering. II. (Russian) Current problems in mathematics, 3 (Russian), (1974), 93–180. | MR | Zbl
[9] Gilbert R.P., Mawata C., Xu Y., Determination of a distributed inhomogeneity in a two-layered waveguide from scatteed sound, in: Direct and Inverse Problems of Mathematical Physics, ed. Gilbert R. et al, Kluwer, 2000. | MR | Zbl
[10] Goldstein C., Eigenfunction expansions associated with the Laplacian for certain domains with infinte boundaries, Trans. A. M. S. 135 (1969), 1-50. | MR | Zbl
[11] Goldstein C., Meromorphic continuation of the S-matrix for the operator actying in a cylinder, Proc. A. M. S. 42 (1974), 555-562. | MR | Zbl
[12] Isakov V. and Nachman A., Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), 3375–3390 | MR | Zbl
[13] Isozaki H., Kurylev Y. and Lassas M., Spectral and scattering properties for the compound waveguides with asymptotially cylindirical ends, in preparation.
[14] Khenkin G.M., Novikov R., The -equation in the multidimensional inverse scattering problem. (Russian), Usp. Mat. Nauk 42 (1987), 93–152 | MR | Zbl
[15] Kachalov A., Kurylev Ya., Lassas M., Inverse Boundary Spectral Problems, Chapman Hall / CRC 123, 2001. | MR | Zbl
[16] Kachalov A., Kurylev Y., Lassas M., Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. IMA volumes in Mathematics and Applications (Springer Verlag) Geometric Methods in Inverse Problems and PDE Control, Ed. C. Croke, I. Lasiecka, G. Uhlmann, M. Vogelius, 2004, pp. 183-214. | MR | Zbl
[17] Lyford W.C., Spectral analysis of the Laplacian in domains with cylinders, Math. Ann, 218 (1975), 229-251. | EuDML | MR | Zbl
[18] Lyford W.C., Asymptotic energy propagation and scattering of waves in waveguides with cylinders, Math. Ann, 219 (1976), 193-212. | EuDML | MR | Zbl
[19] Melrose R. B., Geometric Scattering Theory. Cambridge University Press, Cambridge (1995), 116 pp. | MR | Zbl
[20] Nachman A., Sylvester J., Uhlmann G., An -dimensional Borg-Levinson theorem. Comm. Math. Phys. 115 (1988), 595–605. | MR | Zbl
[21] Sylvester J., Uhlmann G., A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153–169. | MR | Zbl
[22] Wilcox C., Spectral and asymptotic analysis of acoustic wave propagation, in: Boundary value problems for linear evolution: partial differential equations, NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., 29, Reidel, Dordrecht, (1977), 386-473. | MR | Zbl
Cited by Sources: