The goal of this talk is to describe the Lamé operator which drives the propagation of linear elastic waves. The main motivation for me is the work I have done in collaboration with Michel Campillo’s group from LGIT (Grenoble) on passive imaging in seismology. From this work, several mathematical problems emerged: equipartition of energy between and waves, high frequency description of surface waves in a stratified medium and related inverse spectral problems.
We discuss the following topics:
@article{TSG_2006-2007__25__55_0, author = {Yves Colin de Verdi\`ere}, title = {Elastic wave equation}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {55--69}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.247}, mrnumber = {2478808}, zbl = {1171.35427}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.247/} }
TY - JOUR AU - Yves Colin de Verdière TI - Elastic wave equation JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 55 EP - 69 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.247/ DO - 10.5802/tsg.247 LA - en ID - TSG_2006-2007__25__55_0 ER -
Yves Colin de Verdière. Elastic wave equation. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 55-69. doi : 10.5802/tsg.247. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.247/
[1] J. Bolte & R. Glaser. Quantum ergodicity for Pauli Hamiltonians with spin . Nonlinearity, 13:1987–2003 (2000). | MR | Zbl
[2] J. Chazarain. Construction de la paramétrix du problème mixte hyperbolique pour l’équation des ondes. C. R. Acad. Sci., Paris, Sér. A 276:1213–1215 (1973). | Zbl
[3] Yves Colin de Verdière. Ergodicité et fonctions propres du laplacien. Commun. Math. Phys., 102:497–502 (1985). | MR | Zbl
[4] F. Faure & S. Nonnenmacher. On the maximal scarring for quantum cat map eigenstates. Commun. Math. Phys., 245:201–214 (2004). | MR | Zbl
[5] P. Gérard & E. Leichtnam. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J., 71:559–607 (1993). | MR | Zbl
[6] R. Hennino, N. Trégourès, N. M. Shapiro, L. Margerin, M. Campillo, B. A. van Tiggelen & R. L. Weaver. Observation of Equipartition of Seismic Waves. Phys. Rev. Lett., 86:3447–3450 (2001).
[7] J.P. Keating, J. Marklof & B. Winn. Value Distribution of the Eignefunctions and Spectral Determinants of Quantum Star Graphs. Commun. Math. Phys., 241:421–452 (2003). | MR | Zbl
[8] L. Landau & E. Lifchitz. Théorie de l’élasticité. Editions Mir, Moscow, 1990. | Zbl
[9] L. Margerin, in preparation .
[10] M. Reed & B. Simon. Methods of Modern Mathematical Physics, vol 1. Academic Press, (1972). | MR | Zbl
[11] Ph. Sécher. Etude spectrale du système différentiel associé à un problème d’élasticité linéaire. Ann. Fac. Sc. Toulouse, 7:699–726 (1998). | Numdam | Zbl
[12] A. Schnirelman, Ergodic properties of eigenfunctions. Usp. Math. Nauk., 29:181–182 (1974). | MR
[13] R. Schubert. Semi-classical Behaviour of Expectation Values in Time Evolved Lagrangian States for Large Times. Commun. Math. Phys., 256:239–254 (2005). | MR | Zbl
[14] Günter Schwarz. Hodge Decomposition–A Method for Solving Boundary Values Problems. Springer LN, 1607 (1995). | MR | Zbl
[15] M. Taylor. Rayleigh waves in linear elasticity as a propagation of singularities phenomenon. Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), pp. 273–291, Lecture Notes in Pure and Appl. Math., 48, Dekker, New York, 1979. | MR | Zbl
[16] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55:919–941 (1987). | MR | Zbl
[17] S. Zelditch & M. Zworski. Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys., 175:673–682 (1996). | MR | Zbl
Cited by Sources: