@article{TSG_1998-1999__17__139_0, author = {Frank Pacard}, title = {Construction de surfaces \`a courbure moyenne constante}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {139--157}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {17}, year = {1998-1999}, doi = {10.5802/tsg.212}, zbl = {1100.53500}, mrnumber = {1752703}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.212/} }
TY - JOUR AU - Frank Pacard TI - Construction de surfaces à courbure moyenne constante JO - Séminaire de théorie spectrale et géométrie PY - 1998-1999 SP - 139 EP - 157 VL - 17 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.212/ DO - 10.5802/tsg.212 LA - fr ID - TSG_1998-1999__17__139_0 ER -
%0 Journal Article %A Frank Pacard %T Construction de surfaces à courbure moyenne constante %J Séminaire de théorie spectrale et géométrie %D 1998-1999 %P 139-157 %V 17 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.212/ %R 10.5802/tsg.212 %G fr %F TSG_1998-1999__17__139_0
Frank Pacard. Construction de surfaces à courbure moyenne constante. Séminaire de théorie spectrale et géométrie, Volume 17 (1998-1999), pp. 139-157. doi : 10.5802/tsg.212. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.212/
[1] C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. de Mathématiques, 6(1841) 309-320.
[2] J. Eells, On the surfaces of Delaunay and their Gauss maps. Proc. IV int. Colloq. Differential geometry, Santiago de Compostela 1978, 97-116 ( 1979). | MR | Zbl
[3] K. Grosse-Brauckmann, New surfaces of constant mean curvature, Math. Z. 214 ( 1993) 527-565. | MR | Zbl
[4] K. Grosse-Brauckmann, R. Kusner et J. Sullivan, Constant mean curvature surfaces with three ends. To appear. | MR | Zbl
[5] N. Kapouleas, Complete constant mean cuvature surfacesin Euclidean three space, Ann. of Math. (2) 131 ( 1990), 239-330. | MR | Zbl
[6] N. Korevaar, R. Kusner et B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. of Diff. Geometry, 30 ( 1989) 465-503. | MR | Zbl
[7] R. Kusner, R. Mazzeo et D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 ( 1996) 120-137. | MR | Zbl
[8] R. Mazzeo et F. Pacard, Constant mean curvature surfaces with Delaunay ends. On peut trouver le fichier ps à l'adresse suivante http://xxx.lanl.gov/ps/math.DG/9807039 | Zbl
[9] R. Mazzeo, F. Pacard et D. Pollack, Connected sums of constant mean curvature surfaces in Euclidean 3 space. On peut trouver le fichier ps à l'adresse suivante http://xxx.lanl.gov/ps/math.DG/9905077 | Zbl
[10] R. Mazzeo, D. Pollack et K. Uhlenbeck, Connected sum constructions for constant scalar curvature metries, Top. Methods Nonlin. Anal. 6 No. 2, ( 1995), 207-233. | MR | Zbl
[11] J. Perez et A. Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Uni. Math. J. 45 ( 1996) 177-204. | MR | Zbl
[12] R. Schoen , The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm. Pure and Appl. Math. XLI ( 1988), 317-392. | MR | Zbl
[13] H. Wente, Complete immersions of constant mean curvature, Proc. Sympos. Pure Math. 54 Amer. Math. Soc. ( 1993). | MR | Zbl
Cited by Sources: