@article{TSG_1994-1995__13__157_0, author = {Louis Boutet de Monvel}, title = {C\^ones symplectiques et op\'erateurs de {Toeplitz}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {157--166}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {13}, year = {1994-1995}, doi = {10.5802/tsg.159}, zbl = {0909.58049}, mrnumber = {1715964}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.159/} }
TY - JOUR AU - Louis Boutet de Monvel TI - Cônes symplectiques et opérateurs de Toeplitz JO - Séminaire de théorie spectrale et géométrie PY - 1994-1995 SP - 157 EP - 166 VL - 13 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.159/ DO - 10.5802/tsg.159 LA - fr ID - TSG_1994-1995__13__157_0 ER -
%0 Journal Article %A Louis Boutet de Monvel %T Cônes symplectiques et opérateurs de Toeplitz %J Séminaire de théorie spectrale et géométrie %D 1994-1995 %P 157-166 %V 13 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.159/ %R 10.5802/tsg.159 %G fr %F TSG_1994-1995__13__157_0
Louis Boutet de Monvel. Cônes symplectiques et opérateurs de Toeplitz. Séminaire de théorie spectrale et géométrie, Volume 13 (1994-1995), pp. 157-166. doi : 10.5802/tsg.159. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.159/
[1] Boutet De Monvel L. Hypoelliptic operators with double characteristics and related pseudodifferential operators. Comm. Pure Appl. Math. 27 ( 1974), 585-639. | MR | Zbl
[2] Boutet De Monvel L. On the index of Toeplitz operators of several complex variables. Inventiones Math. 50 ( 1979) 249-272. cf. aussi Séminaire EDP 1979, Ecole Polytechnique. | EuDML | MR | Zbl
[3] Boutet De Monvel L. Variétés de contact quantifiées. Séminaire Goulaouic-Schwartz, 1979-80, exposé 3. | Numdam | MR | Zbl
[4] Boutet De Monvel L. Convergence dans le domaine complexe des séries de fonctions propres. C.R.A.S. 287 ( 1979), 855-856. | MR | Zbl
[5] Boutet De Monvel L. Opérateurs à coefficients polynomiaux, espace de Bargman, et opérateurs de Toeplitz. Séminaire Goulaouic-Meyer-Schwartz, 1980-81 exposé 2 bis. | EuDML | Numdam | MR | Zbl
[6] Boutet De Monvel L. Opérateurs pseudodifférentiels à bicaractéristiques périodiques. Séminaire Bony-Meyer-Sjöstrand, Ecole Polytechnique, 1984, exposé 20. | Numdam | MR
[7] Boutet De Monvel L. Toeplitz Operators, an asymptotic quantization of symplectic cones. Research Center of Bielefeld-Bochum-Stochastics, University of Bielefeld (FDR) 215/86 ( 1986). | Zbl
[8] Boutet De Monvel L., Guillemin V. The Spectral Theory of Toeplitz Operators Ann. of Math Studies 99, Princeton University Press, 1981. | MR | Zbl
[9] Boutet De Monvel L., Sjöstrand J. Sur la singularité des noyaux de Bergman et de Szegö. Astérisque 34-35 ( 1976) 123-164. | EuDML | Numdam | MR | Zbl
[10] Duistermaat J.J. Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm Pure Appl. Math. 27 ( 1974), 207-281. | MR | Zbl
[11] Duistermaat J.J., Guillemin V. The spectrum of positive elliptic operators and periodic geodesics. Proc. A.M.S. Summer lnst. Diff. Geom. Stanford ( 1973). | Zbl
[12] Duistermaat J.J., Hörmander L. Fourier integral operators II. Acta Math. 128 ( 1972), 183-269. | MR | Zbl
[13] Duistermaat J.J., Sjöstrand J. A global construction for pseudo-differential operators xith non involutive characteristics. Invent. Math. 20 ( 1973), 209-225. | MR | Zbl
[14] Fedosov B.V. Formal quantization. Some topics of Modem Mathematics and their Applications to Problems of Mathematical Physics (in russian), Moscow ( 1985), 129-136. | MR
[15] Fedosov B.V. Index theorems in the algebra of quantum observables. Sov. Phys. Dokl 34, ( 1989), 318-321. | MR
[16] Fedosov B.V.A simple geometrical construction of deformation quantization. J.Diff Geom. | Zbl
[17] Fedosov B.V. Proof of the index theorem for deformation quantization. Advances in Partial Differential Equations, Akademie Verlag, Berlin ( 1994). | MR | Zbl
[18] Fedosov B.V. Reduction and eigenstates in deformation quantization. Advances in Partial Differential Equations, Akademie Verlag, Berlin. | MR | Zbl
[19] Fefferman C. The Bergman kernel and biholomorphic equivalence of pseudo-convex domains. Inventiones Math. 26 ( 1974), 1-65. | MR | Zbl
[20] Guillemin V., Sternberg S. Geometrical asymptotics. Amer. Math. Soc. Surveys 14, Providence RI, 1977. | MR | Zbl
[21] Hörmander L. Fourier integral operators I. Acta Math. 127 (19721), 79-183. Melin A. | MR | Zbl
[22] J. Sjöstrand. Fourier Integral operators with complex valued phase functions. Lecture Notes 459 ( 1974) 120-223. | MR | Zbl
[23] Melin A., Sjöstrand J. Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Comm. PD.E. 1:4 ( 1976) 313-400. | MR | Zbl
[24] Weinstein A., Zelditch S. Singularities of solutions of Schrödinger equations on Rn. Bull. Amer. Math. Soc., 6, nb. 3 ( 1982), 449-452. | MR | Zbl
[25] Weinstein A. Fourier integral operators, quantization, and the spectrum of a Riemanian manifold. Géométrie Symplectique et Physique Mathématique, Coll. International du C.N.R.S. 237 ( 1976), 289-298. | MR | Zbl
[26] Weinstein A. Noncommutative geometry and geometry and geometric quantization. in Symplectic Geometry and Mathematical Physics, Actes du Congrès en l'honneur de J. M. Souriau, P. Donato et al eds., Birkhäuser ( 1991), 446-461. | MR | Zbl
[27] Weinstein A/ Deformation quantization. Séminaire Bourbaki 789, Juin 7994. | Numdam | Zbl
Cited by Sources: