In this paper we consider the slightly -supercritical gKdV equations , with the nonlinearity and . We will prove the existence and stability of a blow-up dynamics with self-similar blow-up rate in the energy space and give a specific description of the formation of the singularity near the blow-up time.
@article{SLSEDP_2015-2016____A19_0, author = {Yang Lan}, title = {Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized {KDV} equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:19}, pages = {1--9}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.93}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.93/} }
TY - JOUR AU - Yang Lan TI - Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized KDV equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:19 PY - 2015-2016 SP - 1 EP - 9 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.93/ DO - 10.5802/slsedp.93 LA - en ID - SLSEDP_2015-2016____A19_0 ER -
%0 Journal Article %A Yang Lan %T Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized KDV equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:19 %D 2015-2016 %P 1-9 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.93/ %R 10.5802/slsedp.93 %G en %F SLSEDP_2015-2016____A19_0
Yang Lan. Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized KDV equations. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Talk no. 19, 9 p. doi : 10.5802/slsedp.93. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.93/
[1] J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg de Vries equation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 351 (1995), no. 1695, 107–164.
[2] J. L. Bona and F. B. Weissler, Similarity solutions of the generalized Korteweg-de Vries equation, Mathematical Proceedings of the Cambridge Philosophical Society 127 (1999), no. 02, 323–351.
[3] R. Côte, Construction of solutions to -critical KdV equation with a given asymptotic behavior, Duke Math. J. 138 (2007), no. 3, 487–531.
[4] D. B. Dix and W. R. McKinney, Numerical computations of self-similar blow-up solutions of the generalized Korteweg-de Vries equation, Differential and Integral Equations 11 (1998), no. 5, 679–723.
[5] D. Foschi, Inhomogeneous Strichartz estimates, Journal of Hyperbolic Differential Equations 2 (2005), no. 1, 1–24.
[6] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics 8 (1983), 93–128.
[7] M. Keel and T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics 120 (1998), no. 5, 955–980.
[8] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics 46 (1993), no. 4, 527–620.
[9] H. Koch, Self-similar solutions to super-critical gKdV, Nonlinearity 28 (2015), no. 3, 545–575.
[10] H. Koch, D. Tataru, and M. Vişan, Dispersive equations and nonlinear waves, Springer, 2014.
[11] D. J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39 (1895), no. 240, 422–443.
[12] Y. Lan, Stable self-similar blow-up dynamics for slightly -supercritical generalized KdV equations, Communications in Mathematical Physics 345 (2016), no. 1, 223–269.
[13] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the –critical generalized KdV equation, Journal of the American Mathematical Society 15 (2002), no. 3, 617–664.
[14] —, Nonexistence of blow-up solution with minimal -mass for the critical gKdV equation, Duke Mathematical Journal 115 (2002), no. 2, 385–408.
[15] —, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Annals of Mathematics 155 (2002), no. 1, 235–280.
[16] Y. Martel, F. Merle, and P. Raphaël, Blow up for the critical generalized Korteweg-de Vries equation I: Dynamics near the soliton, Acta Mathematica 212 (2014), no. 1, 59–140.
[17] —, Blow up for the critical gKdV equation II: minimal mass blow up, To appear in JEMS (2015).
[18] —, Blow up for the critical gKdV equation III: exotic regimes, To appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2015).
[19] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, Journal of the American Mathematical Society 14 (2001), no. 3, 555–578.
[20] F. Merle, P. Raphaël, and J. Szeftel, Stable self-similar blow-up dynamics for slightly super-critical NLS equations, Geometric and Functional Analysis 20 (2010), no. 4, 1028–1071.
[21] —, On collapsing ring blow up solutions to the mass supercritical NLS, Duke Math. J. 168 (2014), no. 2, 369–431.
[22] P. Raphaël, Existence and stability of a solution blowing up on a sphere for an -supercritical nonlinear Schrödinger equation, Duke Mathematical Journal 134 (2006), no. 2, 199–258.
[23] P. Raphaël and J. Szeftel, Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation, Communications in Mathematical Physics 290 (2009), no. 3, 973–996.
[24] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Communications in Mathematical Physics 87 (1983), no. 4, 567–576.
[25] —, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM journal on mathematical analysis 16 (1985), no. 3, 472–491.
[26] —, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Communications on Pure and Applied Mathematics 39 (1986), no. 1, 51–67.
Cited by Sources: